natural Heritage

A STUDY OF EFFECTS OF PRESECRIBED BURNING ON OAK WOODLAND AND SAVANNA PLANTS AND ANIMALS: SMALL MAMMAL INVESTIGATIONS.

prepared by

Steven Byers

Robert Montgomery

and

Brad Semel

Max McGraw Wildlife Foundation Dundee, Illinois

October 24, 1986

TABLE OF CONTENTS

ACK	NOWL	ED(5E1	1EN	TS	5.	• •	• •	•	•	•	•	•	-	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	i	¥
INT	RODL	ICT	IO	Ν.	•	•	•	• •	•		-	•	•	•	•	۰	•	•	-	•	•	•	•	•	•	•	•	•	•	1
MET	HODS	; .	•	• •	-		•. •	• •	•	•	•	-	•	-	•	•	-	•	•	•	-	•	•	•	•	•	•	•	•	1
RES	SULTS Wads Midd Somm Reed Habi	WOI Ile Ile I I Ti ta		n S ork ods ner	av 9 9 fe	ar Sav Sav	vai vai vai vai en (a S nna nna nna :e	Sit 5 5 5 5 5	e ii ii	te te	•	•	•		•	•	•	•	• • •	•	•	-	•	•	•	-	•	•	2 3 4 5 5 6
SUM	IMAR Y	,	•			•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	7
LIT	ERAT	URI	Ξ (CIT	ED),	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
APF	PENDI	: x /	9	Sr fo	al ur	1	m sa'	amn Var	nal Ina		tr st	ap ud	ppi ly	ng si	1 t∈	. OC 25,	at 6	ic ,8	ns A A	i a lug	ind jus	l p t,	1	9CE	edu 16	וד∈ •	• 1 •	For •	• • •	:he 24
		:	5	ve si	te	21, 24 24	at: 6	-8	e a Au	ig:	us	t,	1	98 98	τr 16		wa •		5WC)r-t	.n •	58	•			•	•	•	- 2	27
				ve si	te	92, 2,	ат 6-	-8	e o Au	ia Igi	ta US	t,	1	ייי 98	τr 36	•	тı -	•		•	or •	• .	sa •	iva •			•	•	.2	8
			-	Ve si	te	≥7.	ατ 6	1 VE -8	e o Au	la: Igi	ta us	t,	1)m .98	τr 86)e	50	חחת -	ne 	WC	•	•	5a •	•	រោក •	•	-	•	.2	29
				ve si Sø	ege te al	2τ: 2, 1	מד: -6- תו	1 V6 -8 am	≥ c Au nal	ig:	ta us ra	t, t,	ריי 1 נור)m .98 .e	τr 86 da	ne • •ta	ке - - f	ec	ז נ • חת	ur • th	- -	יר - שמ	58 • •	LV2 -	inr •	ha	•	•	• 3	51
		1	5	sa Sn	val	1 1	na m	si amn	te	! ,	6 ca	-E	3 A Lur	ug e	jus da	st, at <i>a</i>	1 1 1	98 76	36 5m	th	18	Mi	dd	1e	• F	or	• k	-	• 3	52
			н	sa Sr	va al	11	na ຸກ	si ann	te nal	,	6 ca	-E	l A	iug e	jus da	st, ata	1 1 1	98 rc	36 3m	th	e	Sc	- ៣៣៧	• Ie	- Wo		Is	•	• ~	53
			I	sa Sr sa	ivā ial iva		na m na	si amn si	te nal te		6 ca 6	E .pt E	3 A :ur 3 A	iug e iug	lus da jus	st, ata st,	1 a f 1	78 70 78	36 36	tr		R∈ ∙	ed	י ו -	- Tur	- - -	• •	•	•	54 56

i

FIGURES AND TABLES

FIGURES

1.	Location of small mammal traplines at the Wadsworth savanna site
2.	Location of small mammal traplines at the Middle Fork savanna site
3.	Location of small mammal traplines at the Somme Woods savanna site
4.	Location of small mammal traplines at the Reed Turner savanna site
	TABLES
1.	Summary of numbers of captures, relative abundance, and species richness of small mammals at four savanna sites during the period 6-8 August, 1986
2.	Summary of trapping effort and available trapnights by savanna site and by transect within each site for the trapping period, 6-8 August, 1986
3.	Summary of selected vegetative parameters recorded at four savanna sites during the period 6-8 August, 198615
4.	Summary of numbers of animals captured (and numbers captured / 100 trapnights) along four transects at the Wadsworth savanna study site, August 6-8, 1986
5.	Summary of the age and sex of animals captured along four transects at the Wadsworth savanna study site, August 6-8, 1986
6.	Summary of numbers of animals captured (and numbers captured / 100 trapnights) along four transects at the Middle Fork savanna study site, August 6-8, 1986
7.	Summary of the age and sex of animals captured along six transects at the Middle Fork savanna study site, August 6-8, 1986
8.	Summary of numbers of animals captured (and numbers captured / 100 trapnights) along four transects at the Somme Woods savanna study site, August 6-8, 1986

ACKNOWLEDGEMENTS

The staff of the Max McGraw Wildlife Foundation acknowledge the support and encouragement of Dr. George V. Burger, General Manager of the Max McGraw Wildlife Foundation. His support of this phase of the "savanna project" allowed staff personnel to conduct the small mammal surveys. The Foundation has also provided financial support for other phases of the "savanna project".

We also acknowledge the field support of Scott Storlid and Timothy Santel, interns from the College of Natural Resources, University of Wisconsin at Steven's Point. The field work would have been "longer and tougher" without their enthusiasm and energy.

INTRODUCTION

This report represents the results of small mammal surveys conducted at four savanna sites in northeastern Illinois. These surveys are part of a more inclusive, long-term study designed to document the effects of prescribed burning on oak woodland and savanna plants and animals (Bowles et al. 1986).

This report is preliminary in scope, reporting primarily on the results of the first small mammal surveys conducted in August, 1986. Analysis and relevant literature citations, therefore, are not a major feature of this initial report.

METHODS

Species composition and relative abundance of small mammals at four savanna study sites was surveyed with modified linear traplines (Calhoun and Casby 1958). The configuration of traplines was modified (several traplines rather than one) to accommodate the smaller, block-sized savanna sites. Briefly, traps were set at vegetative sampling stations along previously established transects. A thorough description of the trapline configuration, the number of trapping stations, and traps set at each savanna site is provided in Appendix A. Three traps, usually two Museum Special snap traps (7 x 14 cm) and one Victor snap trap (4.5 x 10 cm), were set at each station. At a few randomly selected stations, a larger Victor snap trap (8.5 x 17.5 cm) was used rather than a Museum Special trap.

The traps were baited with peanut butter and checked daily for 3

T

consecutive mornings. The number of traps sprung each night (usually due to interference by larger mammals) was tallied. The relative abundance of small mammals was expressed as the number captured per 100 trap nights (this compensated for differences in the number of trap nights recorded for each trapline). The age and sex of all captured animals was recorded, with few exceptions. The animals were given an indentification number, when possible, and frozen. These animals are currently stored at the Max McGraw Wildlife Foundation.

Small mammal surveys were conducted at four different savanna study sites. The locations of trap lines at each site are provided in Figures 1-4. The traps were set on 5 August 1986, during a new moon lunar phase, and monitored daily (from 0700 to 1000 hrs) during the period 6-8 August 1986.

Vegetative parameters, including percent canopy, dominant live cover and litter type near the location of the snap traps (herbaceous vs. woody), and distance to nearest edge, were recorded at each trapping station location (Appendices B, C, D, and E).

RESULTS

Five small mammal species were recorded in conjunction with small mammal trapping at the four savanna sites. The species composition and relative abundance of small mammals at each site is summarized in Table 1. White-footed mice (<u>Peromyscus leucopus</u>) were most abundant at each site, accounting for 95.3% of all animals captured. The percentage of white-footed mice ranged from 91.9% at Middle Fork to 100% at Reed Turner (Table 1). The remaining four species, eastern chipmunk (<u>Tamias striatus</u>), meadow vole (<u>Microtus</u>

2

State State State

<u>pennsylvanicus</u>), meadow jumping mouse (<u>Zapus hudsonius</u>), and masked shrew (<u>Sorex cinereus</u>), represented less than 5% of the total captures. The age, sex, and reproductive status of each mammal captured at each site is presented in Appendices F, G, H, and I.

The total trapping effort (the number of trapnights potentially available) for the 3-day trapping period and the actual number of trapnights available (less due to the interference from larger animals) each night is presented in Table 2. The disparity in total trapping effort and actual trapnights available (particularly Transects 3C and 4C at Somme Woods, and three transects at Reed Turner) demonstrate the serious problem we encountered with larger animals, particularly raccoons (<u>Procyon lotor</u>), setting off traps.

<u>Wadsworth Savanna Site</u>: This savanna site was predominantly "woody" in nature with most (52 of 72, 72.2%) trapping station locations dominated by woody vegetation (Table 3). Further, the distance to the nearest edge of these stations was often greater than 10 m suggesting little juxtaposition of different habitat types (Table 3).

The number of animals captured and their relative abundance for each transect is presented in Table 4. White-footed mice were abundant along each transect, with relative abundance ranging from 17.7 to 47.2/100TN (Table 4). During the trapping period, relative abundance of this species increased from 17.2 to 36.2/100TN, Table 4. Meadow voles, although uncommon, were captured along three of the four transects.

The age and sex of animals captured at this site are presented in Table 5. Of the 49 white-footed mice captured, 45 or 91.8% were

adults. Over two-thirds (68.9%) of the adult white-footed mice captured were males (Table 5).

<u>Middle Fork Savanna Site</u>: Of the four savanna sites, this site demonstrated the greatest amount of herbaceous cover as 35 of 60 (58.3%) trapping locations were predominantly herbaceous (Table 3). Distance to the nearest edge seldom exceeded 10 m (Table 3), confirming a high degree of juxtaposition of different habitat types at this site.

This savanna site harbored the greatest species richness (4 species). Never-the-less, white-footed mice were the most frequently encountered species, accounting for 57 of 62 (91.9%) animals captured (Table 6). The eastern chipmunk, masked shrew, and meadow jumping mouse were also recorded at this site. The latter two species were recorded from only this savanna site during the entire survey period (Table 1). It is interesting to note that species richness along Transects 1-4 (those transects with the greatest amount of herbaceous cover) was higher (2-3 species) than Transects 5 and 6. Transects 5 and 6 were predominantly woody cover and harbored only one species, the white-footed mouse. The relative abundance of white-footed mice decreased throughout the trapping period from 31.2 to 15.8/100TN (Table 6).

The age and sex of animals captured at this site are presented in Table 7. The percentage of white-footed mice captured which were adults was 91.2%. Approximately two-thirds (61.5%) of the adults were males (Table 7.)

Δ

<u>Somme Woods Savanna Site</u>: This site consisted of a well-defined treatment area, characterized by a greater amount of herbaceous cover and habitat juxtaposition, than the nearby control area (Table 3).

White-footed mice accounted for 96.7% (117 of 121) of the captures at this site (Table 8). Two other species, the eastern chipmunk and meadow vole, were also captured at this site. The relative abundance of white-footed mice was higher along the more wooded control transects (60.0 and 73.8/100TN) than the treatment transects (16.2 and 32.7/100TN, Table 8). The frequency of interference of traps by raccoons and white-tailed deer (<u>Odocoileus</u> <u>virginianus</u>) along the control transects may have prevented an accurate assessment of relative abundance along these transects, however, because of the reduced number of available trapnights. The relative abundance of white-footed mice for the entire site was 35.6/100TN (Table 8). The data suggests that relative abundance of white-footed mice decreased during the trapping period (Table 8).

The age and sex of animals captured at this site are summarized in Table 9. Approximately 83% (93 of 112) of the white-footed mice captured, which could be accurately aged and sexed, were adults (Table 9). Of the adults, 57 of 93 (or 61.3%) were males.

<u>Reed Turner Savanna Site</u>: This savanna site demonstrated the greatest amount of woody cover as 43 of 49 (87.8%) trapping station locations were predominantly woody (Table 3).

The white-footed mouse was the only species captured at this site, and their relative abundance ranged from 36.0 to 50.0/100TN along the four transects (Table 10). The higher estimates of relative abundance may have resulted from fewer total available

5

12. N. 1998 (1998)

trapnights at this site. Total available trapnights (only 54) was greatly reduced from 450 potential trapnights (Table 2) because of interference from larger mammals, primarily raccoons.

Most of the white-footed mice captured (19 of 20) were adults (Table 11). Of the adults captured, 57.9% were males (Table 11).

<u>Habitat Preference</u>: The white-footed mouse was the most frequently captured species at each savanna site. This is not surprising, given the high amount of woody cover available at each site. In Illinois, Wetzel (1958) noted that the vast majority of white-footed mice captured were in wooded communities. The eastern chipmunk, which is commonly associated with woodland edges (Hoffmeister and Mohr 1957) was captured in typical habitat at two of the savanna sites.

The meadow vole and meadow jumping mouse were both captured at trapping stations within or very near herbaceous cover. Their affinity for herbaceous cover is well documented (Hoffmeister and Mohr 1957).

It is unusual that more masked shrews were not captured. This species occurs in a variety of habitats which support dense ground cover (Hoffmeister and Mohr 1957). It is also unusual that we did not trap short-tailed shrews (<u>Blarina brevicauda</u>), which are also common in habitat types with dense ground cover. SUMMARY

A total of 255 small mammals were trapped at four savanna study sites during the period 6-8 August, 1986. White-footed mice accounted for 95.3% of the captures. The remaining four species, eastern chipmunk, meadow vole, meadow jumping mouse, and masked shrew, accounted for less than 5% of the captures.

Observed species richness (from 1 to 4 species) seemed to be related to the diversity and juxtaposition of habitat types at each site. For example, the highest species richness (4 species) was recorded at the Middle Fork savanna site. This site supported the most herbaceous cover with a high degree of juxtaposition of herbaceous and woody cover. The Reed Turner site, on the other hand, was predominantly "woody" and only a single species was captured at this site. The observed distribution of small mammals at the four savanna sites was consistent with habitat affinities reported in the literature.

Relative abundance of small mammals was relatively consistent among the four savanna sites, ranging from 23.1 to 37.0/100TN. The two higher estimates of relative abundance (36.8 and 37.0/100TN) at Somme Woods and Reed Turner sites, respectively, may have been related to lower numbers of available trapnights at these two sites. There were fewer available trapnights because many traps were "set off" by larger mammals, usually raccoons.

Most small mammals captured at each site were adults. The percentage of adult white-footed mice captured at each site ranged from 83.0% to 95.0%. The proportion of the adult white-footed mice which were males ranged from 57.9% to 68.9%.

Literature Cited

Bowles, M., G. Wilhelm, S. Packard, and S. Apfelbaum. 1986. Funding proposal to support: A study of effects of prescribed burning on oak woodland and savanna plants and animals. The Morton Arboretum, Lisle, Illinois. (mimeo).

Calhoun, J., and J. Casby. 1958. Calculation of home range and density of small mammals. Public Health Monogr. 55:1-24.

Hoffmeister, D., and C. Mohr. 1957. Fieldbook of Illinois Mammals. Ill. Nat. Hist. Surv. Manual 4. 233pp.

Wetzel, R. 1958. Mammalian succession on Midwestern floodplains. Ecology 39:262-271.

Fig. 1. Location of small mammal traplines at the Wadsworth savanna site.

Fig. 2. Location of small mammal traplines at the Middle Fork savanna site.

Fig. 4. Location of small mammal traplines at the Reed Turner savanna site.

Table 1. Summary of numbers of captures, relative abundance, and species richness of small mammals at four savanna sites during the period 6-8 August, 1986.

	Wadswoi	rth	Middle	Fork	Scene	Noods	Reed Ti	urner	Subtot	als -
Species	No. Captured	Na./ 100TN	No. Captured	No./ 100TN	No. Captured	Na./ 100TN	No. Captured	Na./ 100TN	No. Captured	Na./ 100TN
Peromyscus leucopus	49	24.9	57	21.3	117	35.6	20	37.0	243	28.7
Tamias striatus	-	-	2	0.7	3	0.9	-	-	5	0.6
Microtus pennsylvanic	us 3	1.5	-	-	1	0.3	-	+	4	0.5
Zapus hudsonius	-	*	2	0.7	-	-	-	-	2	0.2
Sorex cinereus	-	-	1	0,4	-	-	-	-	1	0.1
Subtotals	52	26.4	62	23.1	121	36.8	20	37.0	255	30.1
Specie richness	2		4		3		1		5	

Table 2. Summary of trapping effort and available trapnights by savanna site and by transect within each site for the trapping period, 6-8 August 1986. The fewer numbers of available trapnights is because larger mammals "set off" many of the traps.

	Total Trapping#	Trapni	ights Avail	lable	Total Traphights
	Effort	Aug. 6	Aug. 7	Aug.8	Available
Wadsworth site					
Transect 1	165	29	35	14	78
Transect 2	164	6	8	7	21
Transect 3	163	25	23	14	67
Transect 4	162	4	20	12	36
Subtotal	654	64	86	47	197
Middle Fork site					
Transect 1	96	13	15	9	37
Transect 2	96	14	19	10	43
Transect 3	96	20	32	24	76
Transect 4	95	14	20	15	49
Transect S	96	15	1	17	33
Transect 6	96	17	12	1	30
Subtotal	575	93	99	76	268
Somme Woods site					
Transect 3C	192	4	0	6	10
Transect 3T	207	32	42	37	111
Transect 4C	203	22	31	4	61
Transect 4T	209	44	51	52	147
Subtotal	811	102	124	99	329
Reed Turner site					
Transect WW1	87	12	9	4	25
Transect CW2	88	6	1	1	8
Transect CW3	180	7	2	2	11
Transect EW1	95	9	1	0	10
Subtotal	450	34	13	7	54
Total	2490	293	322	229	848

* Total trapping effort expressed at number of "potential" trapnights.

Table 3. Summary of selected vegetative parameters recorded at four savanna sites during the period 6-8 August, 1986.

Savanna site	No. Trapping Stations	No. "Woody" Stations	No. "Woody" Stations Where > 10m to Edge	No. Herbaceous Stations	No. Herbaceous Stations Where > 10m to Edge
Wadsworth	72	52	46	17	1
Middle Fork	60	25	12	35	17
Somme Woods Treatment Control (woods)	46 46	29 34	8 30	17 12	10 10
Reed Turner	49	43	37	6	1

Table 4. Summary of numbers of animals captured (and numbers captured /100 trapnights) along four transects at the Wadsworth savanna study site, August 6-8, 1986.

5

•

	augu	ST 6	AUGUS	[7 <i>,</i>	AUGUST	8	SUBTOT	ALS
	ND. CAPTURED	NU./ 100TN	NO. CAPTURED	ND./ 100TN	ND. CAPTURED	NÜ./ 100TN	NO. CAPTURED	NO.7 100th
Transect 1	·							
P. leucopus	4	13.8	8	22.9	2	14.3	14	17.9
H. pennsylvanicus	-	-	* ,	•	1	7,1	1	1.3
Transect 2					,			
P. leuconus	2	33.3	-	-	5	71.4	. 7	33.3
N. pennsylvanicus	-	-	•	-	1	14.3	1	4.7,
Transect 3								
P. leucoous	4	16.0	4	17.4	3	21.4	11	17.7
M. pennsylvanicus	1	4.0	-	-	-	-	1	1.6
Transect 4								
P. leucopus	1	25.0	9	45.0	7	58.3	17	47.2
SUBTOTALS								·
P. leucopus	11	17.2	21	24.4	17	36.2	49	24.9
M. pennsylvanicus	1	1.6	-	-	2	4.3	3	1.5

	August ó				Augu	st	7	i	August	8			S	ubto	tals	;	
	AD M	ULT F	IH M	a M F	AD M	ULT F	-	INN N F	AD M	JLT F	IP H	IN F		adu H	LT F	IH M	Ht F
Transect 1		•															
P. leucopus M. pennsylvanicus	2 -	1 -	- -	1 -	5	- -			1	1 1	-	• . •		8	5 1	-	1
Transect 2																	
P. leucopus M. pennsylvanicus	-	2 -	-	-	-	-			4 1	1 -		- -		4	3	-	
Transect 3																	
P. leucopus N. pennsylvanicus	4 -	-1	-	-	4	- -			2	-	-	1 -		10	-	-	1
Transect 4																	
P. leucopus	-	-	-	1	5	, 3		- 1	4	3	-	-		9	6	-	2
Subototals																	
P. leucopus M. pennsylvanicus	6 -	3 1	-	2 -	14 -	6 -		- 1 	11 1	5 1	-	1	;	31 1 1	4 2	-	4 -

Table 5. Summary of the age and sex of animals captured along four transects at the Wadsworth savanna study site, August 6-8, 1986.

1

.....

4

The age designation INM, for immatures, includes both juveniles and subadults.

Table 6. Summary of numbers of animals captured (and numbers captured / 100 trapnights) along six transects at the Niddle Fork savanna study site, August 6-8, 1986.

. - (.

. ·	August	August	7 /	August	8	Subtota	ls	
	NO. Captured	ND./ 100TN	NO. Captured	NG./ 100tn	NO. Captured	ND./ 100TN	NO. CAPTURED	ND./ 100TN
Transect 1								
P. leucopus S. cinereus	6 -	46.2	4 -	26.7 -	4	44.4 11.1	14 1	37.8 2.7
Transect 2								
P. leucopus T. striatus	6 1	42.9 7.1	6 -	31.6	- , -	-	12 1	27.9 2,3
Transect 3								
P. leucopus T. striatus 2. hudsonius	7 1 -	35.0 5.0 -	4 - -	12.5	- - 1	- - 4.2	11 1 1	14.5 1.3 1.3
Transect 4								
P. leucopus Z. hudsonius	3 1	21.4 7.1	<u>1</u> -	5.0	4 -	26.7	0 1	16.3 2.0
Transect 5						,		
P. luecopus	4	26.7	-	-	2	11.8	6	18.2
Transect 6								
P. leucopus	2	17.6	3	25.0	- .	-	6	20.0
Subtotals								
P. leucopus 2. hudsonius T. striatus S. cinereus	29 1 2 -	31.2 1.1 2.2	18	18.2 - -	- 10 1 	15.8 1.3 - 1.3	57 2 2 1	21.3 0.7 0.7 0.4

Table 7. Summary of the age and sex of animals captured along six transects at the Middle Fork savanna study site, August 6-8, 1986.

	,	Augus	t 6			Augu	ust 7	,		Augu	st 8	l –		Subi	totals	5
	AD M	ULT F	IN N	a M F	AI H	DULT F	I M	HM F	Al M	DULT F	· 1	HH I F	1	NDULT I F	II M	uit F
Transect 1																
P. leucopus S. cinereus	4	-	-	2	- 2	1 -	-	-	-	1 1	•	- -	10	2	-	2
Transect 2																
P. leucopus T. striatus	-	2 1	-	1 -	-	3 -	-	-	-	-	-	-	6 -	5	-	1 -
Transect 3			•													
P. leucopus T. striatus Z. hudsonius	4 - -	2 - -	- - -	1 1 -	2 - -	2 - -	- - -	-	- - 1	- - -	-	-	6 1	4	- - -	1 1 -
Transect 4				\ \												
P. leucopus Z. hudsonius	- 3	- 1	- -	-	-	1 -	- -	-	_ ²	1 -	-	1	-	2 1	- -	_1 _
Transect 5																
P. leucopus	1	3	-	-	-	•	-	-	2	-	-	-	3	2	-	-
Transect 6																
P. leucopus	-	3	-	-	2	1	-	•	•	• .	-	-	2	4	-	-
Subtotals																
P. leucopus Z. hudsonius T. striatus S. cinereus	15 - - -	10 1 1	- - -	4 - 1 -	10 - - -	8 - - - ~		- - -	7 · 1 - -	2 - - 1	-	1 - -	32 1 	20 1 1 1	- - -	5 - 1 -

a.

, i

•

The age designation INH, for immatures, includes both juveniles and subadults.

÷۲.

Table B. Summary of numbers of animals captured (and numbers captured / 100 trapnights) along four transects at the Somme Woods savanna study site, August 6-8, 1986.

ŝ

....

÷

1

÷,

	August	6	August	7	August	8	Subtota	15
	NO. Captured	NQ./ 100TN	NO. Captured	NG./ 100TN	NO. Captured	NO./ 100TN	NO. CAPTURED	NŪ./ 100TN
Transect 3T								
P. leucopus	10	31.3	5	11.9	3	8.1	18	16.2
H. pennsylvanicus	1 -	3.1	-	-	-		1	0.9
Transect 3C								
P. leucopus	2	50.0	-	-	4	66.7	6	60.0
T. striatus	-	-	-	-	1	16.7	1	10.0
Transect 4T								
P. leucopus	17	38.6	18	35.3	13	25.0	48	32.7
T. striatus	-	•	2	3.9	-	-	2	1.4
Transect 4C					·			
P. leucopus	19	86.4	23	74.2	2	75.0	45	73.8
Subtotals								
P. leucopus	4B	47.1	46	37.1	23	23.2	117	35.6
T. striatus	-	-	2	1.6	1	1.0	3	0.9
m. pennsylvanicus	1	1.0	-	-	-	-	1	v. 3

Table 9. Summary of the age and sex of animals captured along four transects at the Somme Woods savanna study site, August 6-8, 1986.

			Aug	just	6			Augu	ist	7			Aug	ust	8		Sul	tot	al S	
	A M	DULT F	IP H	a (M F	D UNK	AI N	DULT F	1M9 M	l F	UNK	AD N	ULT F	II N	IM F	unk ,	A M	DULT F	IH N	H F	UNK
Transect 3T																				
P. leucopus	6	3	-	1	-	2	3	-	-	-	3	-	-	-	-	11	6	-	1	′ -
M. pennsylvanicus	1	-	-	-	-	•	-	•	-	-	-	-	٦.	-	-	1	-	-	-	-
Transect 3C																				
P. leucopus	2	-	-	- .	-	-	-	•	-	-	2	-	-	1	1	4	-	-	1	1
T. striatus	-	-	-	-	-	-	-	-	•	-	1	-	-	-	-	1	-	-	-	-
Transect 4T																				
P. leucopus	5	10	-	2	-	13	3	1	-	1	5	4	2	2	•	23	17	3	4	1
T. striatus	-	-	-	-	-	1	-	-	-	1		-	-	-	-	1	-	-	-	1
Transect 4C																				
P. leucopus	9	8	1	-	1	9	5	3	6	-	1	-	-	-	2	19	13	4	6	3
Subtotals																				
P. leucopus	22	21	1	3	1	24	11	4	6	1	11	4	2	3	3	57	36	7	12	5
T. striatus	-	-	-	-	-	1	-	-	-	1	1	-	-	-	-	2	-	-	-	1
N. pennsylvanicus	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-

a

b

The age designation IHM, for immatures, includes both juveniles and subadults.

The designation UNK, for unknown, includes animals which could not be accurately identified as to age or sex.

	August	6	August	7 .	August	8	Subtota	ls
	ND. Captured	ND./ 100tn	ND. Captured	ND./ 100TN	ND. Captured	ND./ 100TN	NO. Captured	ND./ 100T N
Transect WW1								
P. leucopus	2	16.7	1.4	44.4	3	75.0	9	36.0
Transect CW2	·					•		
P. leucopus	1	16.7	1	100.0	1	100.0	3	37.5
Transect CN3		•						
P. leucopus	3	42.9	-	-	• .	-	2	27.3
Transect EW1								
P. leucopus	5	55.6		-	-	-	5	50.0
Subtotals								
P. leucopus	11	32.4	5	38.5	4	57.1	20	37.0

Table 10. Summary of numbers of animals captured (and numbers captured / 100 trapnights along four transects at the Reed Turner savanna study site, August 6-8, 1986.

1

.....

	August ó		August 7 /	August 8	Subtotals			
	ADULT	a INN M F	ADULT INN	ADULT / INM	ADULT INM			
	n r	пг	nrnr	nr 11 r	nr nr			
Transect WW1								
P. leucopus	1 1		- 3 - 1	21	35 - 1			
Transect CN2				•				
P. leucopus	1 -		- 1	1	21			
Transect CW3					、			
P. leucopus	3 -				3			
Transect EW1								
P. leucopus	32		· · · ·		32			
Subtotals								
P. leucopus	83		- 4 - 1	3 t	11 8 - 1			

Table 11. Summary of the age and sex of animals captured along four transects at the Reed Turner savanna study site, August 6-8, 1986.

.

a

The age designation INM, for immatures, includes both juveniles and subadults.

Appendix A. Small mammal trapping locations and procedure for the four savannah study sites, 6-8 August, 1986.

WADSWORTH SAVANNA SITE

Small mammal traplines were established along Transects 1, 2, 3, and 4 previously established as vegetative sampling transects (Fig. 1.). Each trapline included 18 stations at which three snap traps were set, with a fourth trap at the last station. The stations, numbered from west to east, were placed along the trapline at 10 m intervals. Thus, each trapline consisted of 55 snap traps extending 170 m. The trapping station number, therefore, corresponded with the respective vegetation sampling number along each transect.

A total of 220 snap traps (4 traplines with 55 traps each) were set at this savanna site.

MIDDLE FORK SAVANNA SITE

Small mammal traplines were established along Transects 1, 2, 3, 4 previously established as vegetative sampling locations (Fig. 2), and along two additional lines (Transect 5 and 6) also noted in Fig. 2. The two additional traplines, originated along the fenceline near the first and we believe second (?) poles south of the centrally located open meadow, and extended along a east-west axis (Fig. 2). Each trapline included 10 stations at which three snap traps were set. A fourth trap was set at both the first and last stations. The stations, numbered from west to east, were placed along the trapline at 10 m intervals. Thus each trapline consisted of 32 snap traps extending 90 m. The trapping station number, therefore, corresponded with the respective vegetative sampling number along each transect.

A total of 192 snap traps (6 traplines with 32 traps each) were set at this savanna site.

And the second

A CARLES CARDE A STATE OF A CARD AND A STATE OF A STATE

SOMME WOODS SAVANNA SITE

Small mammal traplines were established along Transects 3C, 3T, 4C, and 4T previously established as vegetative sampling transects (Fig. 3). Each trapline included 23 stations at which three snap traps were set, with a fourth trap at the last station. The stations were placed along the trapline at 10 m intervals. Thus each trapline consisted of 70 snap traps extending 220 m. The two treatment traplines (3T and 4T) extended along the trapline (which originated at the first vegetative sampling station west of Waukegan Road) in a east to west direction. Therefore, station numbers along these two traplines <u>do not</u> correspond with the respective vegetative sampling station along these two transects. The two control traplines (3C and 4C) extended in a west to east direction from Waukegan Road. The station numbers along these two traplines correspond with the respective vegetative sampling numbers.

A total of 280 snap traps (4 traplines with 70 traps each) were set at this savanna site.

REED-TURNER WOODLAND SAVANNA SITE

Contraction of the second s

Small mammal traplines were established along Transects WW1, CW2, CW3, and EW1 previously established as vegetative sampling transects (Fig. 4). Since the shape of Reed-Turner Woodland savanna site was irregular, the length of the vegetative transects and traplines were different.

Transect WW1: This trapline included 9 stations at which three snap traps were set at most stations. Four traps were set at the first and last station. The stations, numbered from north to south, were placed along the trapline at 10 m intervals. Thus, this trapline consisted of 29 snap traps extending 80 m. Along this

25

Contraction Action Contraction Contraction

trapline, the first 5 stations were in a control area, while the remaining 4 stations were in a treatment or burn area.

Transect CW2: This trapline included 10 stations at which three snap traps were set at most stations. Four traps were set at the first and last station. The stations, numbered from north to south, were placed along the trapline at 10 m intervals. Thus, this trapline consisted of 32 snap traps extending 90 m. Apparently all the stations in this trapline were in the control area. This does need to be condfirmed however.

Transect CW3: This trapline included 20 stations at which three snap traps were set at most stations. Four traps were set at the first and last station. The stations, numbered from north to south, were placed along the trapline at 10 m intervals. Thus, this trapline consisted of 62 snap traps extending 170 m. Along this trapline, the first five and the last three stations are in the control area, while stations 6 - 17 are in the burn or treatment area.

Transect EW1: This trapline included 10 stations at which three snap traps were set at most stations. Four traps were set at the first and last station. The stations, numbered from north to south, were placed along the trapline at 10 m intervals. Thus, this trapline consisted of 32 snap traps extending 90 m. Apparently all the stations in this trapline are included in the treatment or burn area.

A total of 155 snap traps (4 traplines: WW1 = 29 traps, CW2 = 32 traps, CW3 = 62 traps, EW1 = 32 traps) were set at this site.

LOCATION	TRANSECT	STATION	AMOUNTCAN	TYPESITE	TYPELITTER	DISTEDGE	а
WADSWORTH	1	1	150	HERB	HERB	<10	
WADSWUKIM	1	<u>4</u> र	250 250	WOODY	MOODY	>10	
WADSWORTH	1	Ă	>50	WOODY		>10	
WADSWORTH	1.	5	>50	WOODY		>10	
WADSWORTH	1	6	>507	WOODY		>10	
WADSWORTH	1	7	<50	WOODY		>10	
WADSWORTH	1	8	>50	WOODY	WOODY	>10	
WADSWORTH	1		200	WOUDT	WOODY	210	
WADSWUKIK	1	10	250	MOODA	MOODY	>10	
WADSWORTH	1	12	>50	WOODY	WOODY	>10	
WADSWORTH	ī	13	<50	HERB	HERB	<5	
WADSWORTH	1	14	>50	HERB	HERB	<5	
WADSWORTH	1	15	>50	HERB	HERB	<5	
WADSWORTH	1	16	<50	HERB .	HERB	<10 25	
WADSWORTH	1	17	>50	MUUDY			
WADSWUKIM	2	1	/00	HERB	HERB	<5	
WADSWORTH	2	2	<50	WOODY		>10	
WADSWORTH	2	3	<50	WOODY	WOODY	>10	
WADSWORTH	2	4	<50	WOODY	HERB	>10	
WADSWORTH	2	5	<50	MOODA	NOODY	>10	
WADSWORTH	2	0 7	(50	HOODY		>10	
WADSWUKIN	2	é	<50	WOODY		>10	
WADSWORTH	2	9	<50	WOODY	, WOODY	>10	
WADSWORTH	2	10	<50	WOODY		>10	
WADSWORTH	2	11	<50	WOODY		>10	
WADSWORTH	2	12	<50	WOODY		25	
WADSWORTH	2	13	<50			>10	
WADSWORTH	2	15	<50	HERB	HERB	>10	
WADSWUKIM	2	16	30	WOODY	HERB	>10	
WADSWORTH	2	17	<50	YCODW		>10	
WADSWORTH	2	19	<50	WOODY		>10	
WADSWORTH	3	1		WOODY	450D	<pre><pre><pre><pre></pre></pre></pre></pre>	
WADSWORTH	3	2		HEKB	MERD	<10	
WADSWORTH	2	3		MODDY	HERD	<5	
WADSWURTH		5	>50	WOODY	WOODY	<10	
WADSWORTH	ž	6	>50	WOODY		>10	
WADSWORTH	3	7	>50	WOODY	WOODY	>10	
WADSWORTH	3	B	>50	WOODY	•	>10	
WADSWORTH	2	9	>50	WOODY	NOODY	>10	
WADSWORTH	· 3	10	>50	WOODY	WOODY	>10	
WADSWORTH	د ح	11	250	MOODY	WODDY	>10	
WADSWURTH	्र	13	<50	WOODY	WOODY	>10	
MADSHORTH	3	14	>50	WOODY	WOODY	>10	
WADSWORTH	3	15	<50	WOODY	WOODY	>10	
WADSWORTH	3	16	>50	WOODY		25	
WADSWORTH	3	17	>50	WOODY	WOUDY	>10	
WADSWORTH	3	18	200	HEBB	HERB	<5	
WADSWORTH	4	1	<50	HERB	HERB	<5	
WADSWUKIN	4	3	<50	HERB	HERB	<5	
WADSWORTH	4	4	<50	WOODY	WOODY	>10	
WADSWORTH	4	5		ACODA		<5	
WADSWORTH	4	6		HERD	HERB	<5 /#	
WADSWORTH	4	7		WOODY		<5 <5	
WADSWORTH	4	5			WOODY	<5	
WADSWORTH	4	7	<50	HOODY	WOODY	>10	
WADSWUKIN	7	11	>50	WOODY	WOODY	>10	
WADSWORTH	4	12	>50	WOODY	WOODY	>10	
WADSWORTH	4	13	<50	WOODY	WOODY	>10	
WADSWORTH	4	14	<50	WOODY	WOODY	>10	
WADSWORTH	4	15	<50	HERB	MUUDY	>10	
WADSWORTH	4	16	<50 /50		WOODY	>10	
WADSWORTH	4	17	<50	MOODY	WOODY	>10	
WHUDWUKIM	-7			,	··•		

a AMOUNTCAN = % CANOPY COVER AND DISTEDGE = DISTANCE TO NEAREST EDGE

Appendix C. Vegetative data from the Middle Fork savanna site, 6-8 August, 1986.

;

LOCATION	TRANSECT	STATION	AMOUNTCAN	TYPESITE	TYPEL ITTER	R DISTEDGE	d
MIDDLE FORK	1	1		MUUDA		<5	
MIDDLE FORK	i			HEDD.	MODDY		
		~		HEDD	WOODY		
MIDDLE FORK	1				WOODY	10 15	
	1	4		HERB	WUUUUY	KD	
MIDDLE FURK	1	5	>50 /	HERB	WOODY	>10	
MIDDLE FORK	1	6		HERB	MOODA	>10	
MIDDLE FORK	1	7	>50	HERB	WOODY	<10	
MIDDLE FORK	1	8	>50	HERB	WOODY	<10	
MIDDLE FORK	1	9		WOODY	WOODY	<5	
MIDDLE FORK	1	10	>50	MUUDA	MUUDA	>10	
MIDDLE FORK	•	1				10	
MIDDLE FORK	2	÷.	25A		HEND	/10	
	2	4		WUUDY			
MIDDLE FURK	2	<u>د</u>	< 50	WUUDY	WUUDY	< 3	
MIDDLE FORK	2	4	<50	WOODY	WOODY	. >10	
MIDDLE FORK	2	5	<50	HERB	HERB	>10	
MIDDLE FORK	2	6		HERB	HERB	>10	
MIDDLE FORK	2	7	<50	HERB	HERB	>10	
MIDDLE EDRK		Ŕ		HERR	HERB	210	
	-	0				>10	
	2	7		HERD		>10	
MIDDLE FORK	2	10		HERB	HERB	210	
MIDDLE FORK	3	1		HERB	HERB	>10	
MIDDLE FORK	3	2	>50	HERB	WOODY	<10	
MIDDLE FORK	3	3	>50	HERB		<5	
MIDDLE FORK	3	Ā		HERB	HERB	K 5	
MIDDLE CORK	रँ		NSO	MOODY	HERB	<5	
		5	/50	HCCD'		<u>75</u>	
MIDDLE FURK	<u> </u>	<u> </u>		HEND	HOODY		
MIDDLE FURK	<u>ు</u>	-	200	WUUDY	WUUDY		
MIDDLE FORK	3	8	>50	HERB	WOODY	< 5	
MIDDLE FORK	3	9	>50	HERB	WOODY	>10	
MIDDLE FORK	3	10	<50	HERB	WOODY	<5	
MIDDLE FORK	4	1		HERB	HERB	>10	
	Å	2		HERB	HERB	>10	
MIDDLE FORM	Δ	÷ t		HERB	HERB	>10	
MIDDLE FURN	7	ر. ۸		HERR	NEDD	510	
	4	*	150			/5	
MIDDLE FURK	4	а,	<50	HERB		 <5 	
MIDDLE FORK	4	6	<50	WOODY	HERB	< 5	
MIDDLE FORK	4	7		HERB	HERB	<5	
MIDDLE FORK	4	8		HERB	HERB	>10	
MIDDLE FORK	4	9		HERB	HERB	<5	
MIDDLE FORK	4	10	<50	WOODY	WOODY	>10	
MIDDLE FORM	دی			LEDD	HERR	25	
	J F	<u>.</u>			HOODY		
MIDDLE FORK	2	2	. – .	WOODY	WOODY		
MIDDLE FORK	5	3	<50	WOODY	WOODY	>10	
MIDDLE FORK	, 5	4	>50	WOODY	WOODY	>10	
MIDDLE FORK	5	5	<50	WOODY	WOODY	>10	
MIDDLE FORK	5	6		WOODY	WOODY	>10	
MIDDLE FORK	5	7 .		HERB	HERB	<5	
MIDDLE FORK	5	, o	<u> </u>	NERR	HERR	25	
	5	0	100				
MIDDLE FURK	2	9		MERB	HERD	/10	
MIDDLE FORK	5	10	<50	HERB	HERB	<5	
MIDDLE FORK	6	1	<50	WOODY	MOODY.	<5	
MIDDLE FORK	6	2	>50	WOODY	WOODY	<10	
MIDDLE FORK	6	3	<50	. WOODY	WOODY	>10	
MIDDLE FORK	Ā	Ā	>50	MOODY	WOODY	>10	
MIDDLE CONN	4	ан Ц	· • •	MUODA	WOUDA	510	
	0				HOODY	/ • •	
MIDDLE FORK	6	b		WUUUY	WUUUY		,
MIDDLE FORK	6	7	<50	WOODY	WOODY	<d< td=""><td></td></d<>	
MIDDLE FORK	6	8	<50	WOODY	WOODY	>10	•
MIDDLE FORK	6	9	>50	WOODY	WOODY	>10	
MIDDLE FORK	6	10	>50	WOODY	WOODY	<10	
	-				TOWNICS		FDCF
A AMOUNTCAN =	: % CANOP	Y COVER	AND DIS	TEDGE = D	1STANCE T	U NEAKEST	0000

28

ł.

LOCATION		TRANSECT	STATION	AMOUNTCAN	TYPESITE	TYPELITTER	DISTEDGE	d
SOMME WOO	DDS	30	1	>50	WOODY		<5	
SOMME WOO	DDS	30	2	>50	WOODY		<5	
SOMME WOO	DDS	3C	3	>50′	WOODY		<5	
SOMME WOO	DDS	30	4	>50	WOODY		>10	
SOMME WOO	DDS	3C	5	>50	HERB	•	<10	
SOMME WOO	DDS	30	6	<50	WOODY	•	>10	
SOMME WOO	DDS	3C	7	>50	WOODY	WOODY	>10	
SOMME WOO	DDS	3C	8	>50	WOODY	WOODY	>10	
SOMME WOO	DDS	3C	9	>50	WOODY		>10	
SOMME WOO	DDS	30	10	>50	WOODY		>10	
SOMME WOO	DDS	30	11	>50	WOODY,		>10	
SOMME WOO	DDS	30	12	>50	HERB	WOODY	>10	
SOMME WOO	DDS	30	13	>50	WOODY		>10	
SOMME WOO	DDS .	30	14	>50	WOODY		>10	
SOMME WOO	DDS	30	15	>50	WOODY		>10	
SOMME WOO	DDS	30	16	>50	WOODY		>10	
SOMME WO	DDS	30	17	>50	WOODY	WOODY	>10	
SOMME WOO	DDS	30	18	>50	WOODY	WOODY	>10	
SOMME WO	ops	30	19	>50	WOODY	WOODY	>10	
SOMME WOO	ODS	30	20	>50	WOODY	WOODY	>10	
SOMME WO	ODS	30	21	>50	WOODY	WOODY	>10	
SOMME WOO	ops	30	22	>50	WOODY	WOODY	>10	
SOMME WO	DDS	30	23	>50	WOODY	WOODY	<10	
SOMME WO	ODS	3T	1		HERB	HERB	>10	
SOMME WO	ODS	31	2		HERB	HERB	>10	
SOMME WO	ods	3T	3		HERB	HERB	>10	
SOMME WO	ODS	31	4		HERB	HERB	>10	
SOMME WO	DDS	3T	5.		HERB	HERB	210	
SOMME WO	DDS	31	6		HERB	HERB	210	
SOMME WO	ODS	31	7		HERB	HERB	710	
SOMME WO	ODS	31	8		MERB	HERB		
SOMME WO	ODS	31	9	>50	WUUDY	WOODY		
SOMME WO	DDS	ST	10	>50	WUUDY	WUUDY .	 < 0 < 10 	
SOMME WOO	DDS	31	11	>50	HERB		>10	
SOMME WO	DDS	31	12	>50	HERB	HOODY	>10	
SOMME WO	ODS	3T	13	>50	WOUDY	WOODY	>10	
SOMME WO	DDS	31	14	>50	WUUUUY	WUUUUY	>10	
SOMME WOO	DDS	31	15	<50	HERB	HERB	210	
SOMME WO	DDS	ЗT	16	>50	WUUDY	WOODY	>10	
SOMME WOO	DDS	3T	17	>50	WUUDY	WUUDY	710	
SOMME WO	DDS	31	18	>50	WOODY	WUUDY	< 0 / K	
SOMME WO	DDS	<u>31</u>	19		HERB		10 / F	
SOMME WOO	DDS	31	20		HEKB		 	
SOMME WOO	DDS	<u>3</u> T	21	<50	WUUDY		10 75	
SOMME WO	ODS	ЗТ	22	>50	WUUDY	WOODY		
SOMME WOO	DDS	3T	23	<50	WOODY	WUUDY	<	

a AMOUNTCAN = % CANOPY COVER AND DISTEDGE = DISTANCE TO NEAREST EDGE

.

Appendix D. (Continued). Vegetative data from the Somme Woods savanna site, 6-8 August, 1986.

LOCATION

TRANSECT STATION AMOUNTCAN TYPESITE TYPELITTER DISTEDGE

SOMME	WOODS	4C	1	<50	HERB	HERB	<5
SOMME	WOODS	4C	2	>50	WOODY	WOODY	>10
SOMME	WOODS	4C	3	>50	HERB	HERB	>10
SOMME	WOODS	40	4	>50	WOODY	WOODY	>10
SOMME	WOODS	40	5	>50	WOODY		>10
SOMME	WOODS	40	Ā	>50	WOODY	WOODY	>10
SOMME	WOODS	4C	7	>50	HERB	HERB	>10
SOMME	WOODS	40	8	>50	HERB	HERB	>10
SOMME	WOODS	40	9	>50	HERB	HERB	>10
SOMME	WOODS	40	10	>50	MODDY	WOODY	>10
SOMME	WOODS	40	11	>50	MUUDA	WOODY	>10
SOMME	WOODS	40	12	>50	MOODY	WOODY	>10
SOMME	WOODS	40	13	>50	HERB	HERB	>10
SOMME	WOODS	40	14	>50	HERB	HERB	>10
SOMME	WOODS	40	15	>50	WOODY	WOODY	>10
SOMME	WOODS	40	16	>50	HERB	HERB	>10
SOMME	WOODS	40	17	>50	HERB		>10
SOMME	WOODS	40	18	>50	HERB		>10
SOMME	WOODS	4C	19	>50	WOODY		>10
SOMME	WOODS	40	20	>50	WOODY	WOODY	>10
SOMME	WOODS	40	21	>50	WOODY	WOODY	>10
SOMME	WOODS	40	22	>50	WOODY	WOODY	>10
SOMME	WONDS	40	23	>50	WDDDY	WOODY	>10
SOMME	WOODS	4T	1	>50	WOODY		<5
SOMME	WOODS	4T	2	>50	WOODY	HERB	<10
SOMME	WOODS	4T	3	>50	WOODY	HERB	>10
SOMME	WOODS	4 T	4	>50	WOODY	WOODY	>10
SOMME	WOODS	4T	5	>50	WOODY	WOODY	<10
SOMME	WOODS	4T	6	>50	WOODY	WOODY	>10
SOMME	WOODS	4T	7	>50	WOODY	WOODY	>10
SOMME	WOODS	4T	8	>50	WOODY	HERB	<10
SOMME	WOODS	4T	9	>50	WOODY	HERB	<5
SOMME	WOODS	4T	10	<50	WOODY		<5
SOMME	WOODS	4T	11	>50	WOODY		<5
SOMME	WOODS	4T	12	<50	WOODY	HERB	<5
SOMME	WOODS	4T	13	<50	HERB	HERB	<5
SOMME	WOODS	4T	14	<50	HERB	HERB	<5
SOMME	WOODS	4T	15	· - • ,	WOODY	HERB	<5
SOMME	WOODS	4T	16	>50	WOODY		<5
SOMME	WOODS	4T	17		HERB	HERB	<5
SUMME	WOODS	4T	18	< 50	WOODY	HERB	<5
	WOODS	4 T	19	-w-	WOODY	HERB	<5
	MOODS	ΔΤ	20	<50	WOODY	HERB	<5
	WOODS	Δ Ť	21	(50	WOODY	HERB	<5
	MUUDE	4T	22	250	WUUDA	HERS	K 5
	40000 40000	Δ Τ	27	250	HERR	WOODY	<5
	WUUD3		£		1.1101		•₩

a AMOUNTCAN = % CANOPY COVER AND DISTEDGE = DISTANCE TO NEAREST EDGE

Appendix E. Vegetative data from the Reed Turner savanna site, 6-8 August, 1986.

							- 8
LOCATION	TRANSECT	STATION	AMOUNTCAN	TYPESITE	TYPELITTER	DISTEDGE	Ū
REED TURNER	WW 1	01	>50	WOODY	WOODY	>10	
REED TURNER	WW1	02	>50	WOODY	WOODY	>10	
REED TURNER	WW1	3	>50	WOODY	WOODY	>10	
REED TURNER	WW1	4	/>50	WOODY	WOODY	>10	
REED TURNER	WW 1	5	>50	WOODY	WOODY	>10	
REED TURNER	WW1 -	6	>50	WOODY	WOODY	>10	
REED TURNER	WW 1	7	>50	WOODY	WOODY	>10	
REED TURNER	WW 1	8	>50	WOODY	WOODY	>10	
REED TURNER	WW 1	9	>50	WODDY	WOODY	>10	
REED TURNER	CW2	1	>50	HERB	WOODY	<10	
REED TURNER	CW2	2	/ >50	HERB	WOODY	<10	
REED TURNER	CW2	3	>50	WOODY	WOODY	<10	
REED TURNER	CW2	4	>50	WOODY	WOODY	>10	
REED TURNER	CW2	5	>50	WOODY	WOODY	>10	
REED TURNER	CW2	6	>50	WOODY	WOODY	>10	
REED TURNER	CW2	7	>50	WOODY	WOODY	>10	
REED TURNER	CW2	8	>50	WOODY	WOODY	<5	
REED TURNER	CW2	9	<50	WOODY	WOODY	<5	
REED TURNER	CW2	10	<50	WOODY	WOODY	<5	
REED TURNER	CW3	1	>50	HERB	HERB	>10	
REED TURNER	CW3	2	>50	HERB	HERB	<5	
REED TURNER	CW3	3	>50	HERB		<5	
REED TURNER	CW3	4	>50	HERB		<5	
REED TURNER	CW3	5	>50	WOODY	WOODY	>10	
REED TURNER	CW3	6	>50	YOODY	WOODY	>10	
REED TURNER	CW3	7	>50	WOODY	WOODY	>10	
REED TURNER	CW3	8	>50	WOODY	WOODY	>10	
REED TURNER	CW3	9	>50	WOODY	WOODY	>10	
REED TURNER	CW3	10	>50	WOODY	WOODY	>10	
REED TURNER	CW3	11	>50	WOODY	WOODY	>10	
REED TURNER	CW3	12	>50	WOODY	HERB	>10	
REED TURNER	CW3	13	>50	WOODY	WOODY	>10	
REED TURNER	CW3	14	>50	WOODY	WOODY	>10	
REED TURNER	CWR	15	>50	WOÒDY	WOODY	10	
REED TURNER	CWR	16	>50	WOODY	WOODY	<5	
DEED THENER	CW3	17	>50	WOODY	WOODY	<10	
CEED TURNER	СМ3 СМ3	18	550	WOODY	WOODY	>10	
REED TURNER	CMIS	10	>50	WOODY	WOODY	>10	
CCCD TUCNER	CW3	20	550	MUUDA	WOODY	>10	
REED TURNER	CHO	20	>50	MOODY	MOODY	>10	
REED TURNER	EWI	÷.	200 NEO		MOODY	>10	
REED TURNER	EWI	<u></u>	200 NEO	WOODY		>10	
REED TURNER	EW1	د .	200			>10	
REED TURNER	EW1	4	200 /	WOODY		>10	
REED TURNER	EW1	5	200 NEO			>10	
REED TURNER	EW1	0	73V NB0	MOODY		>10	
REED TURNER	EW1	<u> </u>	750 NSA		MUUDA	>10	
REED TURNER	EW1	8	200 NEO		MOODY	>10	
REED TURNER	EWI	7	730 Neo		MOODY	>10	
REED TURNER	EW1	10	/30			~ • •	
aAMOUNTCAN = %	CANOPY AN	ND DISTE	DGE = DIS	TANCE TO	NEAREST H	EDGE	

Appendix F. Small mammal capture data from the Wadsworth savanna site, 6-8 August, 1986.

÷

.

Record	LOCATION	DATE	TRANSECT	STATION	SPI	ECIES	A6E	SEX	REPRODUCTIVE STATUS
1	NADSHORTH	08/06/86	1	6	۶.	LEUCOPUS	ADUL T	1	DESCENDED
2	WADSWORTH	08/06/86	1	13	Ρ.	LEUCOPUS	ADULT	Ň	DESCENDED
3	WADSWORTH	08/06/86	1	14	Ρ.	LEUCOPUS	JUVENILE	F	
4	WADSWORTH	08/06/86	1	17	Ρ.	LEUCOPUS	ADULT	F	LACTATING
5	NADSWORTH	08/06/86	2	2	P.	LEUCOPUS	ADULT	F	PREGNANT
6	NADSWORTH	08/06/86	2	15	P.	LEUCOPUS	ADULT	F	PREGNANT
7	WADSWORTH	08/06/86	3	1	Ρ.	LEUCOPUS	ADULT	B.	DESCENDED
8	MADSHORTH	08/06/86	2	2	₽.	LEUCOPUS	ADULT	M	DESCENDED
•	WADSWORTH	08/06/86	3	3	H.	PENNSYLVANICUS ??	ADULT	F	
10	NADSWORTH	08/06/86	3	7	۴.	LEUCOPUS	ADULT	Ħ	DESCENDED
11	WADSWORTH	0B/06/86	2	8	Ρ.	LEUCOPUS	ADULT	Ħ	DESCENDED
12	WADSWORTH	08/06/86	4	2	Ρ.	LEUCOPUS	SUBADUL T	F	
105	WADSWORTH	08/07/86	1	3	Ρ.	LEUCOPUS	ADULT	N.	DESCENDED
106	WADSWORTH	08/07/86	1	5	P.	LEUCOPUS	ADULT	F	LACTATING
107	NADSWORTH	08/07/86	1	6	₽.	LEUCOPUS	ADUK T	F	
108	WADSWORTH	08/07/86	Í	7	Ρ.	LEUCOPUS	ADULT	N	DESCENDED
109	NADSWORTH	08/07/86	1	8	Ρ.	LEUCOPUS	ADULT	F	LACTATING
110	MADSNORTH	08/07/86	i	10	Ρ.	LEUCOPUS	ADULT	H	DESCENDED
111	NADSHORTH	09/07/86	1	15	ρ.	1 EUCOPUS	ADUL T	N.	DESCENDED
112	MADSHORTH	08/07/RA	•	18	Ρ.	LEUCOPUS	ADULT	÷.	DESCENDED
117	MADSHOPTH	08/07/8L	ż		ρ.	LEUCOPHS	ADUE T	Ň	DESCENDED
114	NADSWORTH	09/07/RA	3	17	P.	LEUCOPUS	ADULT	Ň	DESCENDER
115	NADSKORTH	08/07/84	3	18	Ρ.	LEUCOPUS	ADULT	Ň	DESCENDED
114	MARSHARTH	08/07/86	3	18	Ρ.	I FUCOPUS	ADULT		DESCENDED
117	MADSHORTH	08/07/84	i	3	Ρ.	LEUCOPUS	ADULT	#	DESCENDED
118	MADSHARTH	08/07/84	Å	5	Ρ.	LEUCOPUS	ADULT	Ň	DESCENDED
110	MANSHIRTH	09/07/94	i.	Å	Ρ.	L ENCOPUS	ADUL T	Ň	DESCENDED
120	NADSHARTH	08/07/84	4	6	Ρ.	LEUCOPUS	SUBADUL T	F	
120	MARCHINETH	09/07/94	1	11	Ρ.	I FUCOPUS	ADIN	F	PRESMANT
122	MANSHORTH	08/07/84	4	17	Ρ.	I EUCOPUS	ADULT	F	
121	NADSHORTH	08/07/86	Å	16	Ρ.	LEUCOPUS	ADULT	F	
124	MADSHORTH	08/07/86	1	16	Ρ.	LEUCOPUS	ADULT	Ň	DESCENDED
125	NADSHORTH	08/07/84	4	17	Ρ.	LEUCOPUS	ADULT	N	DESCENDED
197		08/08/84	ť		P.	L EUCOPUS	ADULT	M	DESCENDED
199	MADSWORTH	08/08/84	i	7	Ρ.	LEUCOPUS	ADULT	F	PREGNANT
199	HANSHORTH	08/09/94	•	14	н.	PENNSYLVANICUS	ADULT	F	PREGNANT
200	HANGHORTH	OR/OR/RA	,	1	Ρ.	LEUCOPUS	ADULT	Ň.	DESCENDED
200	NANGMARTN	OR/OR/RA	• •	1	H.	PENNSYLVANTCUS	ADULT	Ň	DESCENDED
201	MANCHINATH	08/09/94	2	i	₽.	I EUCOPUS	ADIALT	H	DESCENDED
201	NADCHOPTU	00/00/00	2	1	P.	I FINCAPUS	ADUL T	N	DESCENDED
203	WARCHODTH	V0/V0/00	2	7 6	ρ.	LEUCOPUS	ADULT	F	LACTATINS
204	WADCHODTH	V0/V0/00	* 7	10	P	I FILCOPIIS	ADULT	Ň	DESCENDED
203	MANCHODIN	V0/V0/00	7	10					DESCENDED
245	MADEHODIN	V0/ V0/ 00	3 7	1	F.			F	
207		V0/V0/00	Т	10	Г. б		ANH T		
208	TI JURGUNG	V0100101	J #	10	T.			Ň	DESCENDED
209	WARCHODT!	00/00/00	7	1	Т+ р		ANN T	н Г	
210	NADONODIU NADONODIU	V0/V0/00	-	2 · 9	F.			T M	DESCENDED
211		00/00/00	7	4	Г. 0		ADUR T	н 1	DESCENDED
212	WHUSWUKIM	VE/05/25	-	12	Т+ 0		ANIN T	n M	DESCENDED
213	WADSNUKTH	V8/V6/66		14	r.		ADUL I	n C	# Laffarder
214	WRDSNURTH	AR108187	1	12	F.		ADJU T	r E	
· 215	WADSWURTH	08/08/86	4	$\boldsymbol{\mu}$	۲.	LEUGUPUS	NUME, 1	r -	Fair I M F Faan

2	Appen	dix G.	Small	mai	mal	capti	ure	datá	from	the	Middle	Fo	rk	
-	savan	na site,	, 6 - 8 /	Augi	ust,	1986	e e							
	Record I	EUCATION	DATE	-	TRANSEC	T STATI	ON SPE	CIES			AGE	SEX	REPRODUCTI V E	STATUS
	13	NIDDLE FORK	08/0	6/86	1	1	P.	LEUCOPU	5		ADULT	Ħ	DESCENDED	
	14	NIDDLE FORK	08/0	6/86	1	2	P.	LEUCOPU	5		ADULT	Ň.	DESCENDED	
	15	MIDDLE FORK	08/0	6/86	1	2	P	LEUCOPU	5		SURADUR T	F		
	14	NIODIE FORK	08/0	6786	1	3	P	I FUCOPU	- C		ANR T	'n	DESCENDER	
	17	NIGHE FOR	00/0 00/0	1/01	1	J	0	I CHÊNDH	87 C		CHDANH T	5	aforeases /	
	10	MINNIE CODA	, VD10,	L/DL	•	10	7 a D	I CHCODIN	9 C			r M	RECOUNTER	
	10	HINDLE FORM		0/00 //00	1	10	г. о	LEVEUPU				n c	NEOFENACA	
	17	NIDULE FURN	. UB/V	0/ 00	4	1	r. •		9			r.		
	20	MIDDLE FUN		6/86	2	1		SINIAIU	5			P		
	21	HIDDLE FOR	08/0	6/86	2	2	P.	LEUCOPU	5		ADGL I		PESCERDED	
	22	NIDDLE FORM	08/0	6/86	2	2	P.	LEUCOPU	5		ADULT	F	LACTATING	
	23	MIDDLE FORM	08/0	6/86	2	4	P.	LEUCOPU	5		ADULT	F		
	24	NIDDLE FORM	(08/0	6786	2	4	P.	LEUCOPU	S		ADULT	者	DESCENDED	
	25	MIDDLE FORM	08/0	6/86	2	10	P.	LEUCOPU	S		ADULT	N.	DESCENDED	
	26	NIDDLE FORK	08/0	6786	3	1	Τ.	STRIATU	S		SUBADULT	Н		
	27	MIDDLE FORM	0\80	6/86	3	2	P.	LEUCOPU	5		ADULT	M	DESCENDED	
	28	NIDDLE FORM	08/0	6/86	3	2	۴.	LEUCOPU	S		ADULT	N	DESCENDED	
	29	MIDDLE FORM	08/0	6/86	3	3	Ρ.	LEUCOPU	6		ADULT	H	DESCENDED	
	30	MIDDLE FORM	08/0	6786	3	6	Ρ.	LEUCOPU	S		ADULT	F	PREGNANT	
	31	MIDDLE FORK	0B/0	6/86	3	8	P.	LEUCOPU	5		SUBADULT	F		
	32	NIDDLE FORK	08/0	6/86	3	10	P.	LEUCOPU	S		ADULT	F		· ·
	33	NIDDLE FORM	08/0	6/86	3	10	P.	I FUCAPU	5		ADULT	Ň	DESCENDED	,
	34	NIDDIE FORM	09/0	L/RL	ž	1	Ρ.	I FUCTPH	5		ADIR T	Ň	DESCENDED	
	15		' AR/A	4/RL	1	ŝ	P.	I FIICOPII	5		ADUL T		DESCENDED	
	17	NIDEL FOR	00/0	6/8L	ì	4	P.	1 FIICOPII	8			й	NESCENDER	
	70 77	NITAN E CAPY	00/0	T/DT	-	7	7	NUNCONS	9 16		ANN T	5		
	37 70		00/0	719T 8100		1	D	I CUCODIN	2			F		
	36 TO	MINDLE FURN		1/01 1/01		1	F.	I ENCODE	2			ŝ		
	37	HIDDLE FURN		0/00 //0/		7	r. 0	LEULUPU:	9		ADIN T	Г. Н	ACCCENTED	
	40	MINNLE FURE	U8/U	6/06 	3	7	r.	LEUGODU			ADUL I	n E	I APTATINE	
	41	MIDDLE FUKK	01/00	6/86	2	10	. ř.	LEULUPU	2			F	LHLINIING DDEENANT	
	42	MIDDLE FURK	. 08/0	6/66	р. ,	1	r.	LEUCOPU			ADUL1	r c		
•	43	MIDDLE FURS	08/0	6/16	6	4	۲.	LEUCUPU				r	LAPTATINE	
		TIDDLE FURK	. QU/0	6/06		Y .	۴.	LEUGUPU			ABUL I	r	CAPTINE THE	
	126	MIDDLE FORK	08/0	7/66	1	9	۲.	LEUCUPU	5			r L	SCOCHACA	
	127	HIDDLE FURK	08/0	//86	1	10	r.	LEUCUPU			ADULI	П	VESLERVEN	
	128	MIDDLE FORK	08/0	7/86	1	10	P.	LEUCOPU	5		ADUL, T		DESCENDED	
	129	NIDDLE FORK	08/0	7/86	1	10	- P.,	LEUCOPU	5		ADUL I			
	130	MIDDLE FORK	08/0	7/86	2	2	ρ.	LEUCOPU	5		ADUL T	H	DESCENDED	
	131	MIDDLE FORK	08/0	7/86	2	3	Ρ.	LEUCOPU	S		ADULT	N	DESCENDED	
	132	HIDDLE FORK	08/0	7/86	2	3	Ρ.	LEUCOPU	5		ADULT	F		
	133	NIDDLE FORK	08/0	7/86	2	5	P.	LEUCOPUS	S		ADULT	F		
	134	HIDDLE FORK	08/0	7/86	2	5	P.	LEUCOPU!	5		ADUL T	M	DESCENDED	
	135	MIDDLE FORK	08/0	7/86	2	7	Ρ.	LEUCOPUS	5		ADUL T	F	LACTATING	
	136	NIDDLE FORK	08/0	7/86	3	2	P.	LEUCOPUS	5		ADULT	F	PREGNANT	
	137	NIDDLE FORM	08/0	7/84	Ĵ	6	P.	LEUCOPIN	5		ADULT	Ħ	DESCENDED	
	179	NINDLE FOR	08/01	7/84	3	10	P.	LEUCOPH	-		ADLE T	Ň	DESCENDED	
	170	MINNIE ENDY	V01V.	7/RL	7	10	P	FILLEN		•	ADIX T	F		
	194 191	MINNE CON	V010	7/04	Å	1	Ď.				ADIN T	F	LACTATING	
	140	NUMBER FURN		7/01	1	1	Г. D		2		ADIN T	, M	DESCENDED	
	141	HINNE FURK	V0/0/	1 / DQ 1 / D4	0	1	т. 6	LEUCOTU	•		ANHT		DESCENDED	
	142	HIDDLE FURK	08/02	1/08	8		Г. Л	LEUCUTU	· ·			п с	POSCHANT	
	143	HIDDLE FORK	06/0	1/86	ð	6	۲.	LEUCUPU	3			-		
	216	NIDOLE FORK	0B/01	1/86	1	L.	۴.	LEUCUPUS	3		ANUL I	r H	TACORNAL DECEMBER	
	217	NIDDLE FORK	08/01	8/86	1	1	۴.	LEUCOPUS	j			N	VEDLENUEU	
	219	MIDDLE FORK	08/01	8/86	t	5	S.	LINEREUS	í			1	BEARFLAFE	
	219	NIDDLE FORK	08/08	8/86	1	9	P.	LEUCOPUS	i		ADUL T	N .	IRSCHADED	
	220	MIDDLE FORK	08/01	8/86	1	10	₽.	LEUCOPUS	5	•	ADUL T	N	DESCENDED	
	221	MIDDLE FORK	08/00	8/86	3	10	1.	HUDSONIL	is		ADULT	N	DESCENDED	
	222	MIDDLE FORK	08/08	3/86	4	1	P.	LEUCOPUS	3		ADULT	N.	DESCENDED	,
	223	MIDDLE FORK	08/08	3/86	4	9	Ρ.	LEUCOPUS	5		ADULT	F	LACTATINE	
	224	NIDDLE FORK	08/08	3/86	4	9	P.	LEUCOPUS	i		ADULT	i	DESCENDED	
	225	MIDDLE FORK	08/08	3/86	4	10	P.	LEUCOPUS			SUBADUL T	F		
	226	HIDDLE FORK	08/05	/84	5	3	P.	LEUCOPUS	;		ADULT	H.	DESCENDED	
	227	NIADIE COPP	08/09	IRL	Ę	5	P.	L FUCOPUS	1		ADUIL T	F		

Appendix H. Small mammal capture data from the Somme Woods savanna site, 6-8 August, 1986

•

Records	LOCATI	DN'	DATE	TRANSECT	STATION	SPi	ECIES .	ALE	SEX	REPRODUCTIVE	STATUS
45	SOMME	WOODS	08/06/86	31	1	P	LEUCOPUS	ADULT	1		
46	SONNE	NCODS	08/06/86	31	1	Ρ.	LEUCOPUS	ADULT	N		
47	SOMME	NOODS	08/06/86	31	7	N.	PENNSYLVANICUS	ADULT	K	DESCENDED	
48	SOMME	KOODS	08/06/86	31	14	Ρ.	LEUCOPUS	ADULT	M	DESCENDED	
49	SOMME	NOODS	08/06/86	31	14	P.	LEUCOPUS	ADULT	F		
50	SOURF	MOODS	0R/06/86	31	16	Ρ.	LEUCOPUS	ADULT	F	PREGNANT	
51	SOUR	NDODS	08/06/86	31	18	Ρ.		ADUL T	H	DESCENDED	
52	SOME	MOODS	OR/OA/RA	31	20	Ρ.	I EUCOPUS	ADIR T	Й	DESCENDED	
53	SDAME	MOODS	08/06/86	31	21	Ρ.	1 EUCOPUS	ADUL T	F	LACTATING	
54	SOMME	NOODS	0R/04/84	31	21	Ρ.	I EUCOPUS	ADIN		DESCENDED	
55	SUMME	MOODS	08/06/86	31	23	P.	1 EUCOPUS	SUBADUL T	F		•.
54	SOME	MOODS	08/06/86	30	3	Ρ.	LEUCOPUS	ADULT		DESCENDED	
57	SOMME	NOODS	08/06/86	30	16	Ρ.	LEUCOPUS	ADULT	Ä	DESCENDED	
58	SUME	NROBS	08/04/RA	40	1	Ρ.	I EUCOPUS	ADULT .	Ň	DESCENDED	
50	CUMPE	NOODS	09/06/06	AC.	2	p	I FUCOPUS	ADUL T	F		
40	SUMME	MUUUU	00/00/00	40	ł	p.	LEUCOPUS	ADULT	F	LACTATINE	
41 41	CUNK	WOODJ	00/00/00 00/04/84	40	र र	9		ADIN T	÷	LACTATING	
12	CORRE	NDODC	V01 V01 00	40	2	5		ADULT	ĥ.	DESCENDED	
10	CURRE	M0003	V0/V0/00	40	;	Г. р		JUNENTI F			
55	COMME	NUUNG	00/ VO/ DO	40	: •	Г. В				DESCENDEN	
69		H0000	V6/V0/00	16	: •	F.			2	ODEENANT	
60	SUME		VD/ VD/ DC	46	· ·	r.			Г. Ш	C REGIMAN	
60	SUNNE CORRE	H00000	VE/V6/06	46	· ·	г. о				NESCENDED	
6/ / 0	DUTHIC	HODDO	VD/ VO/ DO	46	2	Г. 0			а 14	ACCCENTER	
00	CONNE	400bc	VB/V8/86	46	? 9	г. о			n 1	DESCENDED	
B7 30	SOURCE	M0000		46 46	: -	- T+				NESCENNEN	
79		MODDC	V0/V0/00	46	: 1	r.			6	I APTATINE	
/1		NOODC	00/ V0/ 00	46	? "	F.			Ē	LACTATING	
12	SUINE	MORD2	08/06/08	40	? 	r.			Ē	LACTATINE	
73	SURINE	WUUUUS	V5/V6/56	46	2	r.			r F	ODECMONT	
/4	SUMPL		V8/V0/00	46	r n	Г. о				REGREATER	
/3	SUME		VD/ VD/ 00	46	<i>:</i>	F.			3	araaraa	
/6	POULUF	M00000	V0/V0/00	41	-	r.			Ē		
11	SUNNE		VU/V0/U0	41	1	F •			r M	RECEMBED	
/8	SUMME		08/06/86	41	1	r.	LEULUPUS		E	DOCCHANT	
71	SUMME	WUUDS	08/09/89	41	?	۲.			.	TREDMIN I	
80	SONNE	NOUDS	08/06/86	41	?	۲.	LEULUPUS		п с	ACOCCULT	
81	SOMME	NCODS	08/06/86	41	?	r.	LEUCUPUS	ADUR I	r		
82	SOMME	NODDS	08/06/86	41	?	ř.	LEUCUPUS		т. ш	CCCCCMDCD	
83	SOME	NODDS	08/06/86	41	?	۲.			n c	ACOPCIANC N	
84	SOMME	WOODS	08/06/86	41	?	Ρ.	LEUCUPUS	AUULI	г. -	OOFFHANT	
85	SOMME	WOODS	08/06/86	4T	?	₽.	LEUCOPUS	ADULI	Г. 	TKEDIMAI	
86	SONNE	20005	08/06/86	41	?	Ρ.	LEUCUPUS		n	NEOCEMPEN	
67	Somme	NDODS	08/06/86	4T	?	Ρ.	LEUCOPUS	ADUL I	r A		
88	SOMME	NOODS	08/06/86	4T	?	Ρ.	LEUCOPUS	ANAFWICE	1		
89	SOMME	WOODS	08/06/86	4T	17	P.	LEUCOPUS		P		
90	SOMME	KOODS	08/06/86	4T	18	Ρ.	LEUCOPUS	SUBADULT	* 		
91	SOMME	KOODS	08/06/86	4T	19	Ρ.	LEUCOPUS	ADULI	л.	VESCENNEN	
92	SONNE	WDODS	08/06/86	4T	20	P.	LEUCOPUS		r r		
93	Somme	WOODS	08/06/86	4T	21	P.	LEUCOPUS	ADULI	r -		
144	SOMME	NOODS	08/07/86	31	1	Ρ.	LEUCOPUS	ADULT	÷		
145	SOMME	WDODS	08/07/86	31	1	Ρ.	LEUCOPUS	ADULT	N.	DESCENDED	
146	SOMME	WOODS	08/07/86	<u>31</u>	7	P.	LEUCOPUS	ADULT	F	PREDMAN I	
147	SOMME	NDODS	08/07/86	3T	14	P.	LEUCOPUS	ADULT	N	DESCENDED	
148	SOMME	10005	08/07/86	_ 3 T	15	P.	LEUCOPUS	ADULT	F		
149	SOMME	NCODS	08/07/B6	4T	1	P.	LEUCOPUS	ADUL T	H	DESCENDED	
150	SOMME	MOODS	08/07/86	4 T	2	T.	STRIATUS	adult	N		
151	SOMME	NOODS	08/07/86	4T	5	P.	LEUCOPUS	adul t	8	DESCENDED	
152	SOMME	NOODS	08/07/86	4T	6	۶.	LEUCOPUS	JUVENILE	M		
153	SOMME	NOODS	08/07/86	4T	6	P.	LEUCOPUS	ADULT	F		
154	SOMME	NOODS	08/07/86	41	6	P.	LEUCOPUS	ADULT	H.	DESCENDED	

Appendix H. (Continued). Small mamma-l capture data from the Somme Woods savanna site, 6-8 August, 1986.

.

1	55 SONNE NOODS	08/07/86	4 T	9	P.	LEUCOPUS	1	ADUL T	Ħ	DESCENDED
15	56 SONME WODDS	08/07/86	4T	9	1.	STRIATUS	l	UNKNOW	?	
15	57 SOWNE WOODS	08/07/86	- 4 T	10	₽.	LEUCOPUS	i	ADULT	N	DESCENDED
15	58 SOMME NOODS	08/07/86	- 4 T	11	P.	LEUCOPUS	i	ADULT	N	DESCENDED
15	59 SOMME WOODS	08/07/86	4T	12	Ρ.	LEUCOPUS	5	ADULT	N	DESCENDED
- 16	SO SCHME WODDS	08/07/86	4 T	12	₽.	LEUCOPUS		ADUL T	Ħ	DESCENDED
- 16	SI SOMME WOODS	08/07/86	-4T	13	Ρ.	LEUCOPUS	· ·	ADULT	F	LACTATING
- 16	52 SOMME NOODS	08/07/86	- 4 T	- 14	Ρ.	LEUCOPUS		UNKNOW	?	
- 16	53 SOMME NOODS	08/07/86	- 4 T	15	Ρ.	LEUCOPUS	i .	ADULT	N.	DESCENDED
- 16	54 SOMME WOODS	08/07/86	- 4T	16	₽.	LEUCOPUS	i	ADULT	F	LACTATING
- 16	55 SOMME WOODS	08/07/86	4T	18	P.	LEUCOPUS		ADULT	R.	DESCENDED
- 16	66 SOMME WOODS	08/07/86	- 4 T	19	₽.	LEUCOPUS	i	ADULT	1	DESCENDED
- 16	7 SOMME WOODS	08/07/86	- 4 T	20	Ρ.	LEUCOPUS	1	ADULT	N	DESCENDED
- 16	68 SOMME WOODS	09/07/86	4T	23	Ρ.	LEUCOPUS	1	ADULT	N	DESCENDED
- 16	9 SOMME WOODS	08/07/86	4C	2	P.	LEUCOPUS	•	ADULT	N	DESCENDED
17	o some woods	08/07/86	4C	5	₽.	LEUCOPUS	i	ADULT	M	DESCENDED
17	1 SOMME WOODS	08/07/86	4C	5	P.	LEUCOPUS		ADULT	H	DESCENDED
- 17	2 SONME WOODS	08/07/86	4C	5	Ρ.	LEUCOPUS		ADULT	F	LACTATING
- 17	3 SOMME WOODS	08/07/86	4C	7	Ρ.	LEUCOPUS		ADUL T	F	LACTATING
17	4 SOMME WOODS	08/07/86	4C	B	P.	LEUCOPUS		SUBADUL T	F	
17	5 Somme Woods	08/07/86	4C	9	Ρ.	LEUCOPUS		SUBADULT	M	
17	6 SOMME WOODS	08/07/86	40	9	Ρ.	LEUCOPUS		ADULT	M	DESCENDED
- 17	7 SOMME WOODS	08/07/86	4C	10	₽.	LEUCOPUS		ADULT	ii	DESCENDED
17	8 SONME WOODS	08/07/86	4C	10	Ρ.	LEUCOPUS		ADULT	F	LACTATING
17	9 SOMKE WOODS	08/07/86	4C	12	₽.	LEUCOPUS		ADULT	F	LACTATING
18	O SOMME WOODS	08/07/86	4C	14	P.	LEUCOPUS		JUVENILE	F	
18	1 SOMME WOODS	08/07/86	40	14	P.	LEUCOPUS		ADULT	H	DESCENDED
10	2 SOMME WOODS	08/07/86	4C	15	₽.	LEUCOPUS		JUVENILE	F	t.
18	3 SOMME WOODS	08/07/86	4C	15	Ρ.	LEUCOPUS		JUVENILE	N	
18	4 SOMME WODDS	08/07/86	4C	16	P.	LEUCOPUS		SUBADULT	F	
18	S SOMME WOODS	08/07/86	4C	20	P.	LEUCOPUS		JUVENILE	F	
18	6 SORME WOODS	08/07/86	4C	21	P.	LEUCOPUS		JUVENILE	F	
18	7 SONNE WOODS	08/07/86	4C	22	Ρ.	LEUCOPUS		ADULT	N	DESCENDED
18	8 SOMME WOODS	08/07/86	4C	22	Ρ.	LEUCOPUS		ADULT	,N	DESCENDED
18	9 SOMME KOODS	08/07/86	4C	22	Ρ.	LEUCOPUS		JUVENILE	N.	
19	O SOMME NOODS	08/07/86	40	23	Ρ.	LEUCOPUS		ADULT	F	LACTATING
19	I SOMME NOODS	08/07/B6	4C	23	P	Leucopus	•	adult	Ņ	DESCENDED
22	8 SONME WOODS	08/08/86	31	2	P.	LEUCOPUS	????	ADULT	N.	DESCENDED
22	9 SOMME WOODS	08/08/86	31	15	P	LEUCOPUS		ADULT	Ņ	DESCENDED
23	O SOMME NOODS	08/08/86	31	10	. P.	LEUCOPUS	•	ADULT	R.	DESCENDED
23	I SOMME WOODS	08/08/86	3C	1	P. I	LEUCOPUS		ADULT	R.	DESCENDED
23	2 SOMME WOODS	08/08/86	30	3	P.	LEUCOPUS		ADULT	?	
23	3 SOMME WOODS	08/08/86	30	15	₽.	LEUCOPUS		ADUL T	n	DESCENUED
23	4 SOMME WOODS	08/08/86	30	16	P.	LEUCOPUS		SUBADULT	F	
23	5 SOMME WOODS	08/08/86	30	19	- L. 1	STRIATUS		ADULT		
23	5 SOMME WOODS	08/08/86	4 T	L	P.	LEUCOPUS		JUVENILE	F	
23	7 SOKME WOODS	08/08/86	4T	1	P.	LEUCOPUS		JUVENILE	F	
23	B SOMME WOODS	08/08/86	41	2.	P. 1	LEUCOPUS		ADUL I		DESCENDED
23	7 SOMME WODDS	08/08/86	4T	2	P.	LEUCOPUS		ADULT	ŀ	
240	D SOMME WOODS	08/08/86	41	3	P. 1	LEUCOPUS			<u>t</u>	
241	L SOMME WOODS	08/08/86	4T	3	P. 1	LEUCUPUS		JUVENILE		
- 24	Z SUMME WOODS	08/08/86	41	b	r.	LEUCUPUS			П	
24	SUMME HUUDS	08/08/86	41	/	- r. i				п #	
244	N SUMME NOODS	09/08/86	4 1	4	r. 1	LEUGUPUS	•	ADAR 2	ni M	
- 24	SUMME NOUDS	08/08/86	41	11	- r. I	LEUCUPUS		NUUL 1	П Ж	VESULAULU
246	SOMME WOODS	08/08/86	41		P. 1				11 F	NEGLERIE
247	V SOMME WOODS	08/08/86	41	18	. P. I	LEUCOPUS			t r	
248	SOMME NOODS	08/08/86	41	21	P. 1	LEUCUPUS			r 1	FILLBRIN
249	SOMME WOODS	00/08/06	40	6	. V. L	LUCUPUS			7	
250	SUMME WOODS	08/08/86	40	1/	- 7. L	EUCUPUS		ARAN T	f M	RECOLUMER
- 251	SUMME WUUDS	09/09/99	46	21	- r. i	.culurus			п	

Appendix I. Small mammal capture data from the Reed Turner savanna site, 6-8 August, 1986

;

. ..

Record	LOCAT	ION	DATE	TRANSECT	STATION	SP	ECIES	AGE	SEI	REPRODUCTIVE	STATUS	-
94	REED	TURNER	08/06/86	NW1	6	P.	LEUCOPUS	ADULT	N	DESCENDED		
95	REED	TURNER	08/06/86	WW1	8	P.	LEUCOPUS	ADULT	F	PRESNANT		
96	REED	TURNER	08/06/86	CW2	6	P.	LEUCOPUS	ADULT	N	DESCENDED		
97	REED	TURNER	08/06/86	CM3	?	٩.	LEUCOPUS	ADULT	N	DESCENDED		
98	REED	TURNER	08/05/86	CN3	?	P.	LEUCOPUS	ADULT	M	DESCENDED		
99	REED	TURNER	08/06/86	CW3	?	Ρ.	LEUCOPUS	ADULT	N	DESCENDED		
100	REED	TURNER	08/06/86	EW1	2	P.	LEUCOPUS	ADULT	N	DESCENDED		
101	REED	TURNER	08/06/86	EW1	2	P.	LEUCOPUS	ADULT	F	PRESNANT		
102	REED	TURNER	08/06/86	E¥1	3	P.	LEUCOPUS	adult	M	DESCENDED		
103	REED	TURNER	08/06/86	EW1	8	P.	LEUCOPUS	adul t	F	PREGNANT		
104	REED	TURNER	08/06/86	EW1	9	P.	LEUCOPUS	ADULT	M	DESCENDED		
192	REED	TURNER	08/07/86	WW1	3	P.	LEUCOPUS	SUBADULT	F			
193	REED	TURNER	08/07/86	WW1	3	Ρ.	LEUCOPUS	ADULT	F	PREGNANT		
194	REED	TURNER	08/07/86	WWL	6	P.	LEUCOPUS	ADÙLT	F	PREGNANT		
195	REED	TURNER	08/07/86	WW1	8	P.	LEUCOPUS	ADULT	F	PREGNANT		
196	REED	TURNER	08/07/86	CN2	2	P.	LEUCOPUS	ADULT	F	PREGNANT		
252	REED	TURNER	08/08/86	WW1	1	P.	LEUCOPUS	ADULT	M	DESCENDED		
253	REED	TURNER	08/08/86	WW1	8	P.	LEUCOPUS	ADUL T	F	PREGNANT		
254	REED	TURNER	08/08/66	WW1	9	P.	LEUCOPUS	ADUL T	M	DESCENDED		
255	REED	TURNER	08/08/86	CW2	4	P.	LEUCOPUS	ADULT	M	DESCENDED		

 ${\bf t}^{j}$