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Executive Summary 
In 2017, staff from the Illinois Natural History Survey continued to monitor translocated 

populations of two federally-endangered freshwater mussel species in the Vermilion River basin (Wabash 

River drainage). Through 2017, a total of 3,699 Northern Riffleshell (Epioblasma rangiana) and 4,166 

Clubshell (Pleurobema clava) have been translocated to the Middle Fork and Salt Fork Vermilion rivers in 

the Vermilion River basin, Champaign and Vermilion counties, Illinois, and these translocated animals 

have been monitored since being moved to Illinois. This end-of-the-year report summarizes the activities 

for the 2017 calendar year, and includes two reprints and a galley of a third paper summarizing data from 

this project. This relocation project is being funded, in part, by a natural resource damage assessment 

settlement (Hegeler Zinc—Lyondell Basell Companies) to the U.S. Fish and Wildlife Service and to the 

State of Illinois, and by the U.S. Fish and Wildlife Service’s Ohio River Basin Fish Habitat Partnership. 
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Project History 
[taken from Tiemann (2014, 2015) and Tiemann et al. (2015, 2016)] 

The Northern Riffleshell Epioblasma rangiana and Clubshell Pleurobema clava were once 

widespread throughout the Ohio River basin but both have experienced significant range reductions during 

the last century as a result of reduced habitat and water quality. Because of this range reduction, the USFWS 

listed both species as federally-endangered in 1994. The joint recovery plan listed an objective of 

establishing viable populations of the species in ten separate river drainages throughout their respective 

ranges, and stated that population augmentations and reintroductions would be needed to achieve this 

objective. Beginning in 2005, natural resource agencies in Illinois partnered with the USFWS and natural 

resource agencies in the Ohio and Pennsylvania and began implementing portions of the recovery plan. One 

goal of the recovery team was to re-establish self-sustaining Northern Riffleshell and Clubshell populations 

in the Vermilion River basin (Wabash River drainage) in Illinois.  

A salvage project in Pennsylvania in the Allegheny River provided an opportunity for the 

translocation of both species. Between 2010 and 2016, a total of 3,699 Northern Riffleshell (Epioblasma 

rangiana) and 4,166 Clubshell (Pleurobema clava) have been translocated to eight sites in the Vermilion 

River basin in Champaign and Vermilion counties, Illinois (Figure 1). Of those animals, 2,099 Northern 

Riffleshell (1,196 males and 903 females) and 1,766 Clubshell were PIT (passive integrated transponder) 

tagged to allow monitoring to determine success of the project. Historical yearly data were summarized by 

Tiemann (2014, 2015) and Tiemann et al. (2015, 2016), and those data were analyzed and recently 

published (see Stodola et al. 2017 – Appendix 1). 

 

2017 Project Activities 
There was not an opportunity in 2017 to translocate additional individuals from Pennsylvania1; 

thus, the only activities that occurred in 2017 was monitoring. Stodola et al. (2017) suggested monitoring 

translocated Northern Riffleshell and Clubshell in autumn because of greater detection rates. Therefore, we 

only monitored once during 2017 (Table 1). Three manuscripts using data from this project were published 

in 2017 (Ashton et al. 2017; Robinson et al. 2017; Stodola et al. 2017 – Appendix 1). Lastly, we submitted 

a proposal to the Illinois Department of Natural Resources to evaluate the long-term viability of Northern 

Riffleshell and Clubshell in Illinois. Securing these funds will help us identify potential suitable habitat in 

the Vermilion River basin, project population viability with varying degrees of augmentation via additional 

translocation or captive rearing.   

                                                
1 The U.S. Highway 62 (=Hunter Station) Bridge over the Allegheny River (Forest County, Pennsylvania) 
mentioned in Tiemann (2014, 2015) and Tiemann et al. (2015, 2016) was imploded on 4 October 2017. Therefore, 
any additional translocations from this site seem unlikely as the majority of the instream work has been completed. 
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Table 1. Encounter rates by species by site (with stream name) for the 2017 calendar year for PIT tagged 
mussels (NRS = Northern Riffleshell and CS = Clubshell). Data are number detected / maximum number 
of individuals in the stream at a site at that period. Site information can be found in Tiemann (2014) and 
Figure 1. “NS” = not sampled. 

Species Richter 

(Salt) 

Smith 

(Salt) 

Donut 

(Salt) 

MFNP 

(Middle) 

Ford 

(Middle) 

Horse 

(Middle) 

Kennekuk 

(Middle) 

Beaver 

(Middle) 

NRS 19/236 125/549 178/420 NS 22/250 12/224 2/182 4/50 

CS 104/363 288/340 300/427 NS 112/285 78/231 1/224 102/130 

 

 
2018 Proposed Activities 

We will continue to monitor PIT tagged translocated Northern Riffleshell and Clubshell in 2018. 

We also will collaborate with the Illinois Department of Natural Resources and the U.S. Fish and Wildlife 

Service on developing species guidance plans, species conservation plans, and species recovery plans for 

both the Northern Riffleshell and Clubshell that will help guide and prepare us for future translocation 

events. 
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Figure 1. Translocation sites from the Northern Riffleshell and Clubshell project in the Vermilion River 

basin (Wabash River drainage), Illinois.  
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ABSTRACT

Despite the increasing use of passive integrated transponder (PIT) tags in freshwater mussel
research and conservation, there has been no evaluation of the trade-offs in cost and effort between
commonly used adhesive types. These factors could be important to consider if tag retention rates do
not vary by adhesive, the effects of handling are large, or resources are limited. We modeled and
evaluated how material costs and effort function over a range of sample sizes by using field data from
the relocation of 3,749 PIT-tagged Clubshell (Pleurobema clava) and Northern Riffleshell (Epioblasma
rangiana) in Illinois, 261 Eastern Elliptio (Elliptio complanata) in Maryland, and the release of 99
Cumberland Combshell (Epioblasma brevidens) in Virginia. Each study used externally affixed 12.5-
mm, 134.2-kHz PIT tags, but used a different adhesive to encapsulate tags (Illinois, underwater epoxy
resin; Maryland, surface-insensitive gel cyanoacrylate; and Virginia, dental cement). We determined
the total cost-per-tag-effort (CPTE) after parameterizing cost, quantity required, application time, and
time for each adhesive. After accounting for standardized costs of staff time and adhesive,
cyanoacrylate was the least costly adhesive to affix, encapsulate, and cure PIT tags on a per mussel
basis. Differences in CPTE were small when the number of mussels tagged was low, but they increased
by US$2–6 mussel�1. A primary goal in mussel projects is reduced stress from aerial exposure. Using
underwater epoxy, which requires time above water to cure, can negate this goal and increase costs as it
requires more handling effort than cyanoacrylate or dental cement. Nevertheless, more resource-
intensive adhesives may still be an appropriate choice when the number of study animals is low.
Further study is warranted to understand how our model may vary by adhesive brand, application
rate, staffing level, and environmental factors.

KEY WORDS: relocation, translocation, tagging, mark–recapture, monitoring, sensors

INTRODUCTION
Relocation and reintroduction is a common conservation

strategy to address the national decline in populations of

freshwater mussels (Haag and Williams 2014; FMCS 2016).

Understanding survival and demographic rates of mussel

populations is imperative to assess conservation and manage-

ment actions, which necessitates tracking a sufficient number

of individual animals or cohorts over time. Studies that seek to

monitor and assess the success of freshwater mussel

conservation actions (e.g., translocation, relocation, and

reintroduction) typically use sampling designs that require

individually marked animals (e.g., capture–recapture, Villela*Corresponding Author: matthew.ashton@maryland.gov
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et al. 2004). The resulting models of demographics and vital

rates are based on the probability of detecting a marked animal

in subsequent surveys (Burnham et al. 1987). Although mostly

sessile, mussels exhibit imperfect detection that can vary by

species, size, environmental factors, sampling design, survey

method, and observer (Metcalfe-Smith et al. 2000; Meador et

al. 2011; Stodola et al. 2017). Consequently, evaluating

mussel conservation actions has been hampered by low rates

of recapture (Cope and Waller 1995; Cope et al. 2003), leaving

the fate of many mussels unknown. An inability to recapture a

sufficient number of marked animals may cause data to be

deficient, imprecise, or possibly even biased and has

implications for conservation (Wisniewski et al. 2013; Hua

et al. 2015).

Passive integrated transponder (PIT) tags are relatively

inexpensive means of uniquely marking animals that has been

widely used to track populations of large and small terrestrial

vertebrates (Gibbons and Andrews 2004). As PIT tag technology

has advanced, the reduced size of microchips and waterproof tag

readers have allowed them to be used with small-bodied aquatic

vertebrates and invertebrates, including fishes (Roussel et al.

2000; Cooke et al. 2011; Pennock et al. 2016), crayfishes (Black

et al. 2010), and bivalve mollusks (Kurth et al. 2007; Hamilton

and Connel 2009; Hale et al. 2012). More recently, this

technology has been used to study freshwater mussel movement

and behavior (Peck et al. 2007; Gough et al. 2012; Newton et al.

2015) and the survival of released endangered species (wild,

Fernandez 2013; hatchery produced, Hua et al. 2015). In the first

evaluation of PIT tag use for mussel translocation monitoring,

Kurth et al. (2007) observed recapture rates were twice as high as

rates observed using visual surveys. Hua et al. (2015) found near

complete detection of hatchery-stocked mussels during seven

monitoring events over a 2-yr period. Tiemann et al. (2016)

recovered 83% of PIT-tagged mussels during 17 monitoring

events over 3 yr following a short-distance relocation.

The PIT tags are located subcutaneously in vertebrates and

larger invertebrates because their body mass is large relative to

the tag size. Internal insertion is generally avoided for freshwater

mussels in favor of external affixation because it can result in

premature tag rejection or animal mortality (Kurth et al. 2007).

Although mussels have been tagged internally (e.g., Layzer and

Heinricher 2004), external placement of shellfish tags is the

predominant method used to mark mussels in capture–recapture

studies (Lemarie et al. 2000; Villela et al. 2004), especially when

using PIT tags (Kurth et al. 2007; Peck et al. 2007) and sensors

(Hauser 2015; Hartman et al. 2016a, 2016b). Cyanoacrylate and

epoxy resin adhesives have been primarily used to externally

affix PIT tags to mussel shells, and they have variable curing

times, costs, and chemical compositions, in addition to bond

strength and longevity. These types of adhesives have shown

low rates of mortality and high rates of PIT tag retention in

laboratory and in situ settings (Young and Isley 2008). A third,

less commonly used adhesive (dental cement) has shown similar

performance (Kurth et al. 2007; Hua et al. 2015).

Despite their rapidly increasing use in mussel research and

conservation, there has been just a few studies on the effects of

external adhesion on mussel behavior, movement, growth, and

survival (e.g., Wilson et al. 2011; Peck et al. 2014; Hartmann

et al. 2016a; Hua et al. 2016). Furthermore, there has been no

evaluation of the trade-offs in material cost and effort (i.e.,

application and curing time) between the three most widely

implemented adhesive types. These could be important factors

to consider when developing a conservation plan or ecological

study that incorporates PIT tags if the effects of handling or

transportation may already be large or if resources are limited.

Our objective was to model and evaluate how these factors

function over a range of tagging sample sizes for epoxy resin,

cyanoacrylate, and dental cement adhesives.

METHODS
We used data from three case studies that represent field

applications of externally affixed PIT tags by using three

adhesive types with four freshwater mussel species that have

been monitored for �2 yr.

Illinois Case Study
Natural resource agencies in Illinois PIT tagged 1,766

Clubshell (Pleurobema clava) and 1,983 Northern Riffleshell

(Epioblasma rangiana) translocated from the Allegheny River

beneath the existing U.S. Highway 62 Bridge, Forest County,

Pennsylvania, between 2012 and 2014. Clubshell ranged in

length from 23 to 62 mm (l ¼ 45.2 mm), whereas Northern

Riffleshell varied from 26 to 78 mm (l¼ 53.1 mm). Mussels

were shipped in coolers from Pennsylvania to Illinois (~10 h

out of water) and then placed in quarantine holding tanks at the

Illinois Natural History Survey Aquatic Research Facility in

Champaign-Urbana, Illinois. Each tank provided continuous

ground water (temperature ranged from 20 to 228C), lacked

substrate, and was aerated using air pumps. The 2012 cohort

was held in quarantine for 14 d, whereas the 2013 and 2014

classes were quarantined for 4–5 d before being released.

While in quarantine, individual mussels were externally

affixed with 12.5-mm, 134.2-kHz PIT tags (BioMark, Inc.,

Boise, ID) by using Devcon 11800 marine grade epoxy resin

(Devcon, Danvers, MA). Batches of up to 50 individuals were

scrubbed to removed debris (e.g., algae and caddisfly cases),

towel dried, and affixed with a PIT tag on the right valve and a

uniquely numbered, vinyl shellfish tag (Hallprint, Hindmarsh

Valley, South Australia) on the left valve. To affix both PIT

and shellfish tags, technicians placed a small bead of

cyanoacrylate to hold a tag in place; the brand of

cyanoacrylate varied and no accelerant was applied to the

glue (Fig. 1a). Once dried, PIT tags were completely encased

in epoxy, whereas shellfish tags were encased in cyanoacrylate

(Fig. 1b). Individuals were then databased (i.e., recorded

species, sex, length, tag numbers, and other information)

before being returned to the holding tanks. Out-of-water time

averaged 30 min mussel�1. Animals were held at least 24 h for

the epoxy to fully cure before being hand planted at eight sites

in the Vermilion River basin (Wabash River drainage).

EVALUATION OF PIT TAG ADHESIVES 115
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Animals have since been monitored to estimate the survival

and gauge the success of the project (Stodola et al. in review).

Of the 3,749 animals tagged and relocated, 3,371 (90%) have

been encountered at least once during subsequent recapture

monitoring by using a portable submersible PIT tag antennae.

Maryland Case Study
Maryland Department of Natural Resource biologists

relocated 2,345 Eastern Elliptio (Elliptio complanata) in 2014

from the direct and indirect impact zones of a stream bank

stabilization project along Route 24 in Deer Creek, Harford

County, Maryland. Particular attention was paid to the effort

required to remove, process, and relocate mussels because this

was the first large relocation in the state. As a result, an

additional 541 mussels were collected in preremoval surveys to

assess the potential effects of relocation via capture–recapture

monitoring (Ashton et al. 2016). In total, 427 of the 2,866

mussels collected in the removal and preremoval surveys were

externally PIT tagged. These mussels have been monitored at

five relocation sites and three control sites that received no

relocated mussels annually since 2014. This has resulted in an

additional 149 (2015) and 112 (2016) naive (i.e., unmarked)

mussels being PIT tagged. The Eastern Elliptio PIT tagged

ranged in length from 19 to 86 mm (l ¼ 57.3 mm).

Mussels collected in preremoval, removal, and monitoring

surveys were held on site in flowthrough containers or aerated

coolers that received frequent changes of river water before

processing. After being cleaned of debris, the shell length

(millimeters) of each mussel was measured, and each valve

was marked with a Hallprint tag adhered using a surface-

insensitive, cyanoacrylate gel. Eastern Elliptio ,50 mm in

shell length and every fifth naive mussel were externally

affixed with a 12.5-mm, 134.2-kHz PIT tag. PIT tags were

held in place on the shell in a small bead of cyanoacrylate gel

(Fig. 1c). Using a separate tube of cyanoacrylate without an

application tip, PIT tags were then encapsulated on all sides

with additional adhesive (Fig. 1d). In 2014, PIT tags were

affixed and encapsulated with LOCTITE gel control (Henkel

Corp., Rocky Hill, CT). In 2015 and 2016, Turbo Fuse gel

(Palm Labs Adhesives, DeBary, FL) was used to attach tags.

Total time to measure and tag was maintained at 2 min

mussel�1 to minimize aerial exposure by using one or two

sprays of a cyanoacrylate curing accelerant (Turbo Set I, Palm

Labs Adhesives) in all years. After processing was complete,

mussels were kept in flowthrough or aerated holding

containers of river water before being hand planted into the

substrate. Of the 576 animals PIT tagged in 2014 and 2015,

approximately 25% have been relocated through visual survey

methods at least once in subsequent monitoring (M.J. Ashton

et al., unpublished data).

Virginia Case Study
Ninety-nine Cumberland Combshell (Epioblasma brevi-

dens) were propagated at the Freshwater Mollusk Conservation

Figure 1. Marking of Northern Riffleshell (Epioblasma rangiana) and Clubshell (Pleurobema clava) by (a) attaching passive integrated transponder (PIT) tags to

shells with cyanoacrylate and (b) encapsulating PIT tags in epoxy resin; Eastern Elliptio (Elliptio complanata) by using cyanoacrylate by (c) attaching PIT tags to

shell and (d) encapsulating the PIT tag in cyanoacrylate; and Cumberland Combshell (Epioblasma brevidens) by (e) attaching a PIT tag to the shell with

cyanoacrylate and (f) encapsulating the PIT tag in dental cement.

ASHTON ET AL.116
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Center, Department of Fish and Wildlife Conservation, Virginia

Tech in Blacksburg, Virginia. Over a 2-yr period, mussels were

released from hatchery or in situ culture systems after they

reached a minimum length of 20 mm into the Powell River,

Claiborne County, Tennessee. Tagged Cumberland Combshell

ranged in length from 17.8 to 22.9 mm (l ¼ 19.3 mm).

While in culture, subadult Cumberland Combshell were

marked with a bee tag (The Bee Works, Ontario, Canada) or

vinyl shellfish tag by using cyanoacrylate. A three-step process

was used to externally affix PIT tags in the field. After being

cleaned and dried, PIT tags were held with LOCTITE gel

control cyanoacrylate (Fig. 1e). Tags were then completely

encapsulated in Fuji Glass Ionomer Luting Cement (Fig. 1f;

GC Fuji Luting, Tokyo, Japan). A hypodermic needle was

used to mix the dental cement powder and liquid on a

manufacturer’s supplied application pad and apply the mixed

cement onto the PIT tag via syringe. To reduce negative

effects of exposure, the PIT tagging process was conducted in

the field under shade and took 2 min mussel�1. Mussels were

hand planted into the substrate at the monitoring site after

tagging was complete. The released mussels were monitored

using a portable submersible PIT tag antennae to assess

individual heterogeneity of demographic rates (Hua et al.

2015). Of the 99 animals tagged and released, 97 (98%) have

been encountered at least once during subsequent recapture

monitoring (Hua et al. 2015).

Evaluation
We evaluated the total cost to externally affix PIT tags to

freshwater mussels by parameterizing the cost (US$ g�1) of

each primary adhesive (A), quantity of adhesive (qA) used in

each case study (g mussel�1), time (min mussel�1) needed to

apply the adhesive and PIT tag (tA), and time (min mussel�1)

actively engaged with tagged mussels during the adhesive

curing process (cA) (Table 1). Costs of adhesives per unit were

calculated from purchase records kept in each case study. We

did not include the cost of PIT tags and adhesive used to attach

the tag as they were similar among studies. We also did not

include adhesive use and tag application data from the 2014

portion of the Maryland case study because it was discovered

that a relatively large amount of adhesive remained inside the

applicator even after it appeared exhausted.

The quantity of adhesive used per mussel was determined

by dividing the number of mussels tagged in each study by the

quantity of adhesive consumed. We used the average hourly

salary rate published by the General Services Administration’s

Contract-Awarded Labor Category for project scientists in the

environmental services schedule with a Bachelor’s or higher

education level to determine a constant cost in staff time

(US$96.00 h�1) to affix PIT tags (GSA 2016). Cost in time

spent to cure adhesive type was calculated in the same manor,

but for epoxy the time was estimated at 30 min for batches of

50 mussels instead of for an individual mussel. The parameters

of cost were then totaled and extrapolated on a per mussel

tagged basis (cost-per-tag-effort; CPTE in $US) for cyanoac-

rylate and dental cement as follows:

CPTE ¼ ðA 3 qAÞ3 Nmussels½ �
þ
�

$96:00�h�1 3ðtA 3 NmusselsÞ
h i

=60 min

þ
�

$96:00�h�1 3ðcA 3 NmusselsÞ�=60 min: ð1Þ

For epoxy, CPTE was calculated as follows:

CPTE ¼ ðA 3 qA 3 NmusselsÞ½ �
þ ð$96:00�h�1 3ðtA 3 Nmussels

� �
=60 min

þ
�

$96:00�h�1 3ðcA 3 Nmussels=50Þ�=60 min: ð2Þ

To generate a predictive equation for the relationship between

CPTE and number of mussels tagged, we constructed ordinary

least squares regression models for each adhesive type by

using the lmList function in R package nlme (Pinheiro et al.

2016). A linear method was chosen as opposed to fitting the

extrapolated parameter values against other distributions

because parameters of CPTE increase at a constant rate

mussel per mussel (equation 1) or batch per batch (equation 2).

We used the lm method of the geom_smooth function in R

package ggplot 2 (Wickham 2009) to visualize these

relationships.

RESULTS
The PIT tagging of 3,749 Clubshell and Northern Riffle-

shell consumed approximately six 454-g epoxy adhesives over

the 3-yr period. Tagging of 149 Eastern Elliptio in 2015 and

112 individuals in 2016 consumed four and three 20-g

cyanoacrylate adhesives, respectively. Three 35-g dental

cement adhesives were used to tag 99 Cumberlandian

Combshell in 2009 and 2010. The quantity of adhesive used

Table 1. Comparison of adhesives to attach and encapsulate passive integrated transponder tags to freshwater mussels.

Study Adhesive Adhesive Type

Approximate Time

to Apply (min)

Cure

Time (min)

Cost

(US$ g�1)

Adhesive

(g�mussel�1)

Illinois Devcon 11800 Epoxy resin 5 1,440a 0.14 0.72

Maryland Palm Labs 440 Turbo Fuse Gel Cyanoacrylate 1 1 0.35 0.54

Virginia Fuji Glass Ionomer Luting Cement Dental cement 1 1 2.54 0.94

a We estimated that 2% of the total cure time (30 min) involved costs associated with effort (e.g., transfer of mussels to holding tanks, arrangement within tank, collection for

transport).
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to PIT tag these mussels was similar across years by adhesive

type.

Parameters of adhesive consumption, application, and

curing effort varied by adhesive type (Table 1). Cyanoacrylate

required 24% less adhesive to affix a PIT tag to an individual

mussel than the epoxy and 43% less than dental cement. In

contrast, epoxy was 2.5 times less costly per gram than

cyanoacrylate and 18 times less costly than dental cement.

Epoxy required 5 times more effort to apply and encapsulate a

PIT tag than both dental cement and cyanoacrylate. Total cure

time for epoxy was considerably greater than other adhesives,

yet little of this time was spent handling mussels. Conse-

quently, less effort associated with the process of adhesive

curing accumulated as more mussels were tagged with epoxy

than with cyanoacrylate and dental cement by handling

mussels in batches of 50 (e.g., 100 mussels cured in 60 min

vs. 60 mussels in 60 min).

Linear models of total cost (US$) per PIT-tagged mussel

based on our cost and consumption parameters illustrated that

cyanoacrylate (CPTE ¼ $3.42 3 Nmussels – 1.23�10) was less

costly than dental cement (CPTE¼ $5.60 3 Nmussels – 2.52�13)

or epoxy (CPTE ¼ $9.04 3 Nmussels þ $14.96) (Table 2 and

Fig. 2a). Costs associated with adhesive consumption

increased at a greater rate for dental cement and cyanoacrylate

than epoxy (Fig. 2b). The rate at which CPTE increased as the

number of mussels tagged increased was higher for epoxy than

cyanoacrylate and dental cement due to higher costs associated

with adhesive application effort (Fig. 2c). An initial invest-

ment of effort to cure the first batch of 50 mussels led to higher

upfront costs (i.e., larger y-intercept) for epoxy, but ultimately

resulted in lower costs in comparison with cyanoacrylate and

dental cement as the number of mussels tagged increased (Fig.

2d).

DISCUSSION
External attachment of PIT tags is a marking technique that

can increase detection rates of freshwater mussels (Kurth et al.

2007) and improve the accuracy of survival and demographic

rates (Hua et al. 2015; Tiemann et al. 2016). For this reason,

PIT tags seem especially suited for use in mussel relocation

and conservation monitoring due to historically low recapture

rates (Cope et al. 1995, 2003). A primary goal in studies that

employ recapture sampling is reduced stress from handling,

especially out of water time (Dunn et al. 2000). Aerial

exposure to apply and adhere tags to freshwater mussels by

using cyanoacrylate was generally ,15 min mussel�1

(Lemarie et al. 2000; Villella et al. 2004), yet this can be

reduced to 2 min mussel�1 by using a curing accelerant. Dental

cement has a similar curing time. Using underwater epoxy to

affix PIT tags can negate the reduced handling time goal as it

requires more handling and total curing time than cyanoacry-

late (Table 1 and Fig. 2c).

In this evaluation of the materials and staff time needed to

affix and encapsulate PIT tags to freshwater mussels from

three studies, cyanoacrylate was overall less costly than dental

cement and epoxy on a per mussel basis. Absolute differences

in total cost compared to cyanoacrylate are relatively small

when the number of mussels tagged is low, but they increased

by more than $2 mussel�1 for dental cement and almost $6

mussel�1 for epoxy. We suggest that dental cement and

waterproof epoxy resin may be an appropriate choice of

adhesive for transmitters when the number of study animals is

low. In this scenario, differences in costs among adhesive

types will be negligible, and dental cement or epoxy may be

better suited to protect PIT tags from damage should even

minimal tag loss affect the statistical power to detect a change

in population size or condition. A quicker, more controlled

method of applying epoxy warrants investigation as the effort

Table 2. Costs of materials and effort incurred during the adhesion and curing of passive integrated transponder (PIT) tags to freshwater mussels per mussel and

extrapolated per 100 individuals by adhesive type.a

No.

Mussels

Tagged

Dental cement (US$) Cyanoacrylate (US$) Epoxy (US$)

Adhesive

(qA)

Application

(tA)

Cure

(cA)

Cost

(CPTE)

Adhesive

(qA)

Application

(tA)

Cure

(cA)

Cost

(CPTE)

Adhesive

(qA)

Application

(tA)

Cure

(cA)

Cost

(CPTE)

1 2.40 1.60 1.60 5.60 0.22 1.60 1.60 3.42 0.10 8.00 48.00 56.10

100 239.76 160.00 160.00 559.76 22.46 160.00 160.00 342.46 10.30 800.00 96.00 906.30

200 479.51 320.00 320.00 1,119.51 44.92 320.00 320.00 684.92 20.60 1,600.00 192.00 1,812.60

300 719.27 480.00 480.00 1,679.27 67.38 480.00 480.00 1,027.38 30.90 2,400.00 288.00 2,718.90

400 959.02 640.00 640.00 2,239.02 89.84 640.00 640.00 1,369.94 41.19 3,200.00 384.00 3,625.19

500 1,198.78 800.00 800.00 2,798.78 112.31 800.00 800.00 1,712.31 51.49 4,000.00 480.00 4,531.49

600 1,438.53 960.00 960.00 3,358.53 134.77 960.00 960.00 2,054.77 61.79 4,800.00 576.00 5,437.79

700 1,678.29 1,120.00 1,120.00 3,918.29 157.23 1,120.00 1,120.00 2,397.23 72.09 5,600.00 672.00 6,344.09

800 1,918.04 1,280.00 1,280.00 4,478.04 179.69 1,280.00 1,280.00 2,739.69 82.39 6,400.00 768.00 7,250.39

900 2,157.80 1,440.00 1,440.00 5,037.80 202.15 1,440.00 1,440.00 3,082.15 92.69 7,200.00 864.00 8,156.69

1,000 2,397.55 1,600.00 1,600.00 5,597.55 224.61 1,600.00 1,600.00 3,424.61 102.99 8,000.00 960.00 9,062.99

a qA, quantity of adhesive used in each case study (g mussel�1); tA, time (min mussel�1) needed to apply the adhesive and PIT tag; cA, time (min mussel�1) actively engaged with

tagged mussels during the adhesive curing process; CPTE, cost-per-tag-effort.
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associated with its application evaluated in this study was 5

times more than that of cyanoacrylate or dental cement. This

difference in effort drove CPTE higher for epoxy (Fig. 2a, c),

even though the cost of adhesive consumption per tag was less

and curing in batches may reduce and even reverse any cost

advantage achieved from using a faster curing adhesive (Fig.

2b, d). A more controlled applicator could also reduce the

quantity of epoxy consumed per tag, thus realizing additional

savings in materials. Because application and curing times

were similar for cyanoacrylate and dental cement, differences

in CPTE could be mitigated by more conservative cement

application or a less costly formula.

Prices of adhesives can vary widely, especially when

considering the advent of online shopping, buying in bulk, or

discounts some groups receive (e.g., governmental agencies).

The difference in adhesive cost per unit may in part be because

Figure 2. Linear models for epoxy resin (blue squares), cyanoacrylate (red circles), and dental cement (green triangles). Relationships between (a) cost-per-tagged

mussel versus number of mussels with externally affixed PIT tags and individual cost-per-tag-effort (CPTE) parameters of (b) adhesive consumption, (c)

application time, and (d) curing time versus number of mussels tagged.
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the epoxy evaluated in this study is sold in a greater quantity

per standard package than both dental cement and cyanoac-

rylate. On average, 600 individuals could be affixed with PIT

tags by using a 454-g package of epoxy. In contrast, about 30

individuals could be tagged using a 35-g package of dental

cement. Other factors to consider are the ability to rapidly

procure adhesive, surcharges when not ordering in bulk, or

unintended curing of unused product. For example, acquiring

dental cement can be challenging because its intended use is in

a regulated industry. Also, unexpected demand for additional

adhesive (e.g., tagging more mussels than expected or more

liberal adhesive application) requires the need for impromptu

purchasing. We have observed prices varying by 10–30%

among major retailers for the same cyanoacrylate adhesive.

Cyanoacrylate adhesives and accelerants are often sold in

cases of 10 or 12 and have a suggested shelf life of a year.

There are often surcharges to purchase units less than a case,

which would increase cost per unit parameters if a relatively

small number of mussels are to be tagged. With adequate

planning time, comparison shopping should help keep actual

costs comparable to our studies; however, we noted a 30%

increase in the price of epoxy since the last purchase from the

same vendor.

Although we focused our effort on resources required to

affix PIT tags, the cost of tags can also vary depending on the

quantity, size, and manufacturer. For the data evaluated in our

models, tag cost would have been constant because large

quantities were procured from the same vendor at or about the

same time. However, over the course of these studies tag price

has fluctuated year to year and vendor to vendor by (þ) 150 to

(�) 250% (e.g., prices have ranged from $2 to $5 per tag).

Other costs we did not measure and account for in our

evaluation should also be considered when choosing an

adhesive type for PIT tagging of freshwater mussels. For

example, the curing time associated with underwater epoxies

could reduce the number of mussels that can be tagged and

returned to a stream in a day or require travel between study

sites and laboratory facilities thus extending the number of

field days. Specialized facilities and equipment may also be

necessary to hold mussels in captivity during the curing time,

whereas mussels can be immediately returned to the stream

after cyanoacrylate and dental cures. Tiemann et al. (2016)

speculated that prolonged handling and exposure may have

contributed to the initial mortality observed following

relocation. Factors other than cost may also warrant consid-

eration, including the presence of potentially harmful com-

pounds, adhesive durability, and ability to reapply in the field.

For example, Hartmann et al. (2016a) chose not to adhere

sensors to Duck Mussel (Anodonta anatina) with epoxy resin

due to its complex application and presence of bisphenol-A.

Environmental factors (e.g., air temperature and relative

humidity) can also affect adhesive viscosity and curing time.

We propose that PIT tag retention is generally not an

important factor in choosing an adhesive as previous studies

have shown that retention rates do not seem to vary

substantially by adhesive type (e.g., Young and Isley 2008).

However, PIT tag attachment may fail regardless of adhesive

type if debris causes the bond between shell and adhesive or

adhesive and tag to break. Insufficient PIT tag encapsulation

could cause them to be damaged if mussels become dislodged

or struck with coarse particles during high flow events. Still,

externally affixed PIT tag loss appears to be low over 1–2-yr

periods and comparable to retention rates of vinyl shellfish

tags (e.g., Lemarie et al. 2000). For example, Ashton et al.

(2016) observed the loss or failure of eight (2%) cyanoacry-

late-affixed PIT tags 12 mo after relocation on Eastern Elliptio

that were recovered 650 to 1,500 m downstream of the point of

their relocation in a coarse substrate stream. Similar levels of

tag damage due to cyanoacrylate erosion were observed after

18 mo by Young and Isely (2008), but they observed no tag

damage due to adhesive loss for underwater epoxy. Tiemann

et al. (2016) reported one (1%) tag failure during their

assessment of short-distance mussel relocation with epoxy

encapsulated PIT tags. Hua et al. (2016) observed no failure of

tags embedded in dental cement. We are unaware of any

published studies that have evaluated PIT tag retention beyond

3 yr so we cannot speculate whether a particular type is more

suited for long-term (.10-yr) study.

The findings of our evaluation are likely limited in their

scope to the adhesives we evaluated (gel cyanoacrylate, dental

cement, and 24-h curing waterproof epoxy resin); however,

the assumptions used to parameterize our model are flexible to

other costs and adhesive properties. Accordingly, the costs

incurred from applying and handling with the epoxy used in

this study would have been likely similar if a quicker curing

formula was used based on observations of others (e.g., Young

and Isley 2008). For this reason, we expect that epoxy resin

would sustain higher total costs per mussel tagged without

reductions in application time while also maintaining a

minimal level of effort during the curing process. Further

limitations in our findings may arise from a lack of quantified

variation within each case study and by adhesive type.

Variation when applying model parameters could arise from

fluctuations in adhesive costs, level of adhesive applicator

experience, and staffing. For example, actual staff costs

incurred in the Illinois and Maryland case studies may have

been lower than our model because some tag applicators were

volunteers. However, a relocation or reintroduction involving

a federally listed, cryptic species may necessitate primary

investigators with specialized experience, which could lead to

higher salary rates. Added variation could result from adhesive

brand and environmental factors, including air temperature and

relative humidity. We believe a more thorough comparison of

commercially available adhesives used to externally PIT tag

mussels is warranted.
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Some Phoretic Associations of Macroinvertebrates on Transplanted Federally 
Endangered Freshwater Mussels 
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Abstract - Benthic macroinvertebrates were washed from nearly 1000 federally endangered fresh-
water mussels that had been collected from Pennsylvania during a reintroduction project to 2 eastern 
Illinois streams. Most benthic macroinvertebrates collected were larvae of the Neophylax fuscus, but 
other caddisflies and segmented worms were also observed. No unoccupied caddisfly cases were ob-
served on live mussels, leaving open the question as to the seasonal fate of these microhabitats after 
caddisflies pupate and emerge in the fall each year. Unionid mussel shells might modify local-scale 
species diversity by influencing physical and hydraulic properties of microhabitats.

 Life-history knowledge gaps. Basic attributes of macroinvertebrate life histories are 
often poorly known and under-reported in the scientific literature. Gaps in the informa-
tion on the ecology of individual organisms are one of a number of knowledge gaps that 
systematically limit the effective management and conservation of species, as well as our 
understanding of the factors that constrain species diversity and the evolution of new traits 
and taxa (Cardoso et al. 2011, Hortal et al. 2015). The prospect of improving the manage-
ment of species under special conservation protections provides an additional impetus for 
reporting basic life-history and ecological attributes of these species, and the other mem-
bers of the ecological communities in which they persist. 
 Relocation project. Beginning in 2005, biologists from the Illinois Natural History 
Survey (INHS) partnered with personnel from the US Fish and Wildlife Service and from 
several state resource management agencies in Ohio and Pennsylvania to rescue indi-
viduals of 2 federally endangered mussel species, Epioblasma rangiana (Lea) (Northern 
Riffleshell) and Pleurobema clava (Lamarck) (Clubshell). The mussels were collected from 
the footprint of a proposed bridge construction on the Allegheny River in Forest County, 
PA, in areas of swiftly flowing water with clean and stable sand, gravel and cobble sub-
strates (Stodola et al. 2017, Tiemann 2014). Mussels were relocated to the Vermilion River 
basin in Champaign and Vermilion counties, IL, with the goal of re-establishing viable 
populations of these 2 species into areas where they were considered extirpated (Cummings 
and Mayer 1997, Tiemann 2014). This paper concerns macroinvertebrates collected from 
live mussels transplanted during 26–27 August 2013. 
 Individual mussels (249 Northern Riffleshell and 758 Clubshell) were quarantined 
in a holding facility at the University of Illinois at Urbana-Champaign (UIUC), tagged 
with passive integrated transponder (PIT) tags, and then resituated at 8 different sites in 
the Middle Fork (5) and Salt Fork (3) of the Vermilion River (Stodola et al. 2017, Tie-
mann 2014). During tagging, the external shell of individual mussels was scrubbed and 
temporarily dried to facilitate the attachment of tags. This process rinsed and removed 
attached sediment and epibionts, including caddisfly cases and other aquatic macro-
invertebrates. Most of this material was retained in 95% ethanol for later microscopic 
inspection and identification. 
 We identified 152 individual macroinvertebrates, representing 4 species (Table 1). The 
macroinvertebrates we report herein are a nonrandom and limited subset of the complete 
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phoretic fauna associated with these 2 mussel species, because many organisms were 
certainly detached or disassociated during the process of removal and quarantine. 
 Life history and local ecology. Both of the mussel species considered here are typically 
found in medium to large rivers in clean, stable sand, gravel, and cobble riffles, where they 
may live several inches beneath the streambed surface (Cummings and Mayer 1992, Wat-
ters et al. 2009). These 2 species vertically migrate to the streambed surface during their 
reproductive period; Northern Riffleshell are bradytictic (brooding from September to the 
following June), whereas Clubshells are tachytictic (brooding from early May to July). The 
macroinvertebrate assemblage associated with the shells of these 2 mussel species could be 
different during these reproductive periods compared to the rest of the year. Associations 
of macroinvertebrates and unionids within this interstitial microhabitat are likely to experi-
ence temporal progression within each year, as a function of mussel vertical migration and/
or macroinvertebrate life history (e.g., adult emergence of Neophylax sp. in autumn).

Table 1. List of macroinvertebrates dislodged from 249 Epioblasma rangiana (Northern Riffleshell) 
and 758 Pleurobema clava (Clubshell) from the Allegheny River (Route 62 Bridge, 4.5 km SW Tio-
nesta, Forest County, PA, 41.472348°N, 79.499838°W), collectors J.S. Tiemann, K.S. Cummings, 
S.A. Douglass, A.L. Price, et al.

Phylum Class Order Family Species Count

Arthropoda Insecta Trichoptera Thremmatidae Neophylax fuscus 113
Arthropoda Insecta Trichoptera Leptoceridae Oecetis inconspicua 2
Annelida Clitellata Rhynchobdellida Glossiphoniidae Helobdella papillata 35
 (Hirudinea)
Annelida Clitellata  Tubificida Naididae Nais bretscheri 1
Annelida Clitellata Tubificida Naididae Unidentified Naidinae   1

Figure 1. Ventral view of N. fuscus case, with larva enclosed. Remnants of mussel shell are visible at 
anterior and posterior attachment sites.
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 Neophylax cases are tube-like, typically with large stones flanking the tube along the axis 
of the body of the organism (Fig. 1). The insect prepares for pupation by enclosing the tube 
and firmly attaching the larval case to some firm substrate (including mussel shells) with silk 
produced from glands located in the mouth of the larva (Sehnal and Akai 1990). Cases may 
persist, in some habitats, for several years after the emergence of adults. Larvae occupied all 
cases removed from mussels in this study, and no empty cases from previous seasons were ob-
served. This finding is curious because Neophylax fuscus Banks cases were so firmly attached 
to mussels that removing the cases during our prepping procedure also removed small pieces 
of periostracum (the non-living outer layer of the shell) at the attachment sites (Fig. 2). Law-
field et al. (2014) suggested that Trichoptera case attachment might not harm or damage the 
shell of mussels because this attachment is confined to the periostracum. 
 The aquatic annelids rinsed from external mussel shells included the leech Helobdella 
papillata (Moore; 5 brooding adults, 5 non-brooding adults, and 25+ young of the year that 
had detached from parents), one aquatic oligochaete (Nais bretscheri Michaelsen) and one 
other unidentified naidid oligochaete (Table 1). Several leech species in the family Glos-
siphoniidae (including H. papillata) are known associates of freshwater mollusks, feeding 
primarily if not exclusively on mollusks (Sawyer 1986). Several species in the oligochaete 
genus Chaetogaster (most commonly, Chaetogaster limnaei von Baer) are often collected 
from pulmonate snails (externally, from within the mantle cavities, around the apertures, 
and as parasites in the kidneys; Klemm 1985), from unionid bivalves (externally and from 
within the mantle cavities; Anderson and Holm 1987, Beckett et al. 1996, Kelly 1988), and 
occasionally from freshwater sponges, bryozoans, and crayfishes (Sawyer 1986; Stephen-
son 1930; Wetzel et al. 2009; M.J. Wetzel, pers. observ.). 
 Surprisingly, no Chaetogaster specimens were present in the material washed from the 
mussels from our study, but as noted above, many organisms were certainly detached or 

Figure 2. Close up view of remnants of freshwater mussel shell remaining at the posterior attachment 
site on a N. fuscus case.
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disassociated during the process of removal and quarantine. Neither Nais bretscheri nor 
other congeners are known to have commensal or parasitic relationships with mollusks. It 
is possible that aquatic oligochaetes washed from the mussels were living within silt and 
sand on the shell of the mussels, and also possible that these individuals were only inciden-
tally using areas around caddisfly cases as habitat or refugia. We note a litany of personal 
field and lab experience on oligochaetes and other macroinvertebrate fauna in the contents 
of caddisfly cases or puparia, which frequently contain more macroinvertebrate species 
when examined in detail (Beckett et al. 1996; Bodis et al. 2014; Lawfield et al. 2014; J.L. 
Robinson and M.J. Wetzel, pers. observ.; pers. comm. from caddisfly taxonomists D. Den-
son [Reedy Creek Improvement District, Lake Buena Vista, FL], C. Parker [ret. USGS, 
Gatlinburg, TN], D. Etnier [ret. UT-Knoxville, Knoxville, TN], and D. Ruiter [ret. USEPA, 
Centennial, CO]) and sometimes provide a substrate for Podostemum ceratophyllum Mi-
chx. (Hornleaf Riverweed) (Vaughn et al. 2002). 
 Among our observations, all cases we report were occupied by living caddis, and 
older cases from which caddis had previously emerged were completely absent. Little 
is known about the behaviors or ecological significance of burrowing mussels (New-
ton et al. 2015). Although mussels are known to vertically migrate to escape predation 
(Burlakova et al. 2000) and control zebra mussel infestation (Nichols and Wilcox 1997), 
we hesitate to speculate that vertical migration can remove spent cases. Regardless, 
caddisfly cases may help to create and maintain fine-scale structural and hydraulic and 
ecological diversity widely reported from freshwater mussel habitats (Commito and Ru-
signuolo 2000, Gutierrez et al. 2003, Lawfield et al. 2014, Taniguchi and Tokeshi 2004, 
Vaughn and Spooner 2006).  
 We believe that this report is the first literature discussion of a phoretic association 
between living unionid mussels and any of the confirmed eastern North American species 
of Neophylax (Trichoptera: Thremmatidae) in the ecological literature. However, phoretic 
associations of Trichoptera with unionids have been reported from fossils dating to the Pa-
leocene of North Dakota, where psychomyiid caddisfly retreats and net were preserved on a 
unionid (Erickson 1983). Trichoptera associations must be known or familiar to malacolo-
gists who observe organisms in the field, and associations with case-building Trichoptera 
have previously been suggested from photographs of organisms attached to dead shells 
(Lawfield et al. 2014), but not identified to genus or species. Images posted on the USFWS 
website for this specific project clearly depicted Neophylax cases on specimens in situ, 
and images published in Lawfield et al. (2014) suggest hydropsychids, hydroptilid, and 
glossosomatid caddisflies may successfully colonize the surface of unionids. Interestingly, 
Anderson and Vinikour (1984) reported the use of unionid mussels and viviparid snails as 
pupation sites for the leptocerid caddisfly Oecetis inconspicua (Walker), but no associations 
with other extant Trichoptera species have yet been reported. Interspersed among Neophy-
lax cases were 2 very early instar larvae of some species of Oecetis, in the O. inconspicua 
group (Floyd 1995)—instars that could not be confidently associated with any of the mor-
phologically distinguishable forms within this group.
 Although interesting as ecological trivia, this observation raises issues about quar-
antine and unionid reintroduction efforts. Our results are at best an underestimate of the 
fauna attached to or living on the mussels in situ but a great example of how organisms 
can unintentionally be transported great distances. Predicting which species might be 
most likely to be introduced might prove difficult, because numerous observations of 
epibiotic relations suggest that many different taxa can form these associations without 
specificity (Wahl and Mark 1999). Caddis cases, or macrophytes, might be obvious to 
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most observers and frequently removed during basic quarantine. Oligochaetes or other in-
vertebrates inhabiting the mantle cavities or internal organs of mollusks, as well as those 
capable of hiding in the crevices of the shells, may be more difficult or impossible to posi-
tively remove. The chance for accidental introduction of non-native macroinvertebrates 
obviously increases when hundreds, if not thousands, of mussels are translocated into 
new river basins across multiple years. To avoid potential contamination and unwanted 
introduction of macroinvertebrates, careful, stringent quarantine procedures should be 
considered when transporting freshwater mussels.
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ABSTRACT

Translocation of freshwater mussels is a conservation tool used to reintroduce extirpated
populations or augment small populations. Few studies have evaluated the effectiveness of
translocations, mainly because estimating survival is challenging and time-consuming. We used a
mark-recapture approach to estimate survival of nearly 4,000 individually marked Clubshell
(Pleurobema clava) and Northern Riffleshell (Epioblasma rangiana) translocated to eight sites over a
five-year period into the Salt Fork and Middle Fork Vermilion rivers in central Illinois. Survival
differed among sites and between species; Clubshell were approximately five times more likely to
survive than Northern Riffleshell. Survival also increased in the fourth year following a release and
decreased following high-flow events. Translocating numerous individuals into multiple sites over a
period of years could spread the risk of catastrophic high-flow events and maximize the likelihood for
establishing self-sustaining populations.

KEY WORDS: reintroduction, freshwater mussel, high flow, PIT tag, unionids

INTRODUCTION
North American freshwater mussels have undergone

drastic population declines during the past century and are

one of the most imperiled groups of animals in the world

(Williams et al. 1993; Lydeard et al. 2004; Strayer et al. 2004).

Translocation has been used for decades to augment

populations or reintroduce mussels into regions where species

have declined or are extirpated (Coker 1916; Ahlstedt 1979;

Sheehan et al. 1989). Much time and effort is placed on

collecting, marking, and transporting mussels for transloca-

tion, but few studies have evaluated the effectiveness of

mussel reintroductions. More than a quarter of all translocation

projects conducted prior to 1995 failed to report on the

efficacy of those efforts (Cope and Waller 1995).

Obtaining precise and unbiased estimates of mussel

survival is challenging, even for translocated individuals.

Mussels often burrow beneath the substrate surface when not

actively feeding or reproducing, making them difficult to

detect (Amyot and Downing 1998; Watters et al. 2001; Strayer

and Smith 2003). Furthermore, an unequal proportion of the

population is often sampled, such as larger individuals, those

found in easy-to-sample areas, or those at or near the surface

(Strayer and Smith 2003; Meador et al. 2011). Reliable

estimates of survival can be obtained using capture-mark-

recapture techniques (Hart et al. 2001; Meador et al. 2011).

Capture-mark-recapture methods are often time-intensive due

to the effort needed to capture and mark a large number of

individuals, but marking individuals already captured for

translocation can be easily incorporated.

The federally endangered Clubshell (Pleurobema clava)

and Northern Riffleshell (Epioblasma rangiana) were former-

ly widespread in the Ohio River and Great Lakes basins but

have experienced significant range reductions during the last

century. The recovery plan for the Clubshell and Northern

Riffleshell set objectives of reestablishing viable populations

in 10 separate river drainages across the species’ historical

range via augmentation and reintroduction (USFWS 1994).

Bridge construction on the Allegheny River, Pennsylvania,

which supports large populations of both species, prompted a

salvage operation to remove thousands of individuals from the

impacted area. In an attempt to meet recovery plan objectives,

these individuals were translocated to multiple streams within

seven states where the species had declined or had been

extirpated.*Corresponding Author: jtiemann@illinois.edu
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Beginning in 2006, the Illinois Department of Natural

Resources and the Illinois Natural History Survey partnered

with the U.S. Fish and Wildlife Service and state agencies in

Ohio, Pennsylvania, and West Virginia to translocate Club-

shell and Northern Riffleshell from the Allegheny River to the

Vermilion River system (Wabash River basin) in Illinois,

where both species occurred historically (Cummings and

Mayer 1997; Tiemann et al. 2007). Pilot translocations (n ,

75 individuals) first occurred in 2010 at one site each in the

Salt Fork and Middle Fork Vermilion rivers, and more

widespread translocations occurred at eight sites in 2012,

2013, and 2014. We conducted a five-year capture-mark-

recapture study focusing on those individuals released in 2012,

2013, and 2014 to estimate survival of translocated mussels.

Specifically, our goals were to evaluate (1) how survival

differed according to species, sex, and mussel size, (2) how

survival varied spatially (among sites and between rivers), and

(3) how survival varied temporally after release.

METHODS

Mussel Collection and Transportation
Mussels were collected from the Allegheny River at the

U.S. Highway 62 Bridge, Forest County, Pennsylvania. The

Allegheny River at this site is approximately 200 m wide and

drains an area of approximately 10,000 km2. Mean daily

discharge is approximately 56 m3/s at the end of August and

nearly 425 m3/s at the beginning of April (average of 71 yr;

USGS gage 03016000). We collected 197, 758, and 807

Clubshell and 957, 249, and 777 Northern Riffleshell in 2012,

2013, and 2014, respectively. We measured total length of

each individual as the greatest distance from the anterior to

posterior shell margin (nearest 1 mm), and affixed a 12.5 mm,

134.2 kHz PIT tag (BioMark, Inc., Boise, Idaho) to the right

valve and a uniquely numbered HallPrint Shellfish tag

(HallPrint, Hindmarsh Valley, South Australia) to the left

valve. Northern Riffleshell averaged 45.6 mm long (range 15–

70 mm) and Clubshell averaged 52.2 mm long (range 18–84

mm). We also determined the sex of each Northern Riffleshell

based on shell morphology, although a few smaller individuals

were classified as ‘‘unknown’’ (male:female ratio ¼ 1.34:1);

Clubshell sexes cannot be differentiated by external shell

morphology and were all classified as ‘‘unknown.’’ Clubshell

and Northern Riffleshell were placed in coolers between damp

towels and transported in climate-controlled vehicles to

Illinois.

Mussel Translocation and Release
We selected release sites based on the presence of

presumably suitable habitat for Northern Riffleshell and

Clubshell, which consisted of clean, stable sand, gravel, and

cobble riffles (Watters et al. 2009), abundant and diverse

mussel populations (INHS 2017), and presence of suitable host

fishes (i.e., darters and minnows) for both mussel species

(Cummings and Mayer 1992; Tiemann 2008a, 2008b; Watters

et al. 2009). Based on these criteria, we selected four sites each

in the Salt Fork and Middle Fork Vermilion rivers in east-

central Illinois (Fig. 1). These streams are an order of

magnitude smaller than the Allegheny River, each 30–40 m

wide and draining approximately 1,100 km2. Mean daily

discharge in the Salt Fork is 0.4 m3/s at the end of August and

4.3 m3/s at the beginning of April (average of 45 yr; USGS

gage 03336900); mean daily discharge in the Middle Fork is

0.9 m3/s at the end of August and 8.5 m3/s at the beginning of

April (average of 38 yr; USGS gage 03336645).

We released 3,745 mussels (both species combined)

among all eight sites from 2012 to 2014 (Table 1). Mussels

were released in the late summer, following a quarantine and

acclimatization period (14 d for 2012 mussels and 4–5 d for

2013–2014 mussels, differences between years due to

logistics). We hand-placed mussels into the substrate at each

site within an area demarcated by site-specific landmarks (such

as trees, boulders, water willow beds, or other discernible

feature) to facilitate recapture surveys. The size of marked

release areas varied with site and were between 3–10 m wide

and 20–100 m long. Sites with greater suitable area received

more mussels, but all sites were stocked at less than 50% of

the density observed at the collection site on the Allegheny

River, which is 5.5/m2 for Northern Riffleshell and 7.5/m2 for

Figure 1. The Clubshell and Northern Riffleshell release sites in the Vermilion

River basin (Wabash River drainage), Illinois.
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Clubshell (Enviroscience, Inc., personal communication);

these densities are similar to those seen for these species at

other locations (Crabtree and Smith 2009). We stocked

Clubshell at greater densities than Northern Riffleshell due

to presumed historical presence based on historical shell

collection records (INHS 2017). Logistical constraints (e.g.

land access, previous stocking, mussel availability) largely

dictated which sites received mussels in multiple years.

Field Surveys
We surveyed for PIT-tagged Clubshell and Northern

Riffleshell during 12 sampling periods from 2012 to 2016

(Appendix 1). We used a robust design sampling protocol that

included primary and secondary samples (Fig. 2; Kendall and

Nichols 1995; Kendall et al. 1997). We attempted to conduct

primary samples every 3–4 mo to represent each season

(spring, summer, autumn, winter), but environmental condi-

tions prevented us from collecting all samples during every

year. We used two to three observers during each primary

sample. Each observer was considered an independent sample

and represented a secondary sample in the robust design

framework. We detected PIT-tagged mussels using BioMark

FS2001F-ISO or BioMark HPR Plus receivers with portable

BP antennas (BioMark). Each observer independently tra-

versed the stream in a systematic manner from a unique

starting point while slowly sweeping the streambed with an

antenna. Surveys continued until the release site was covered

completely and extended 5–10 m downstream after detections

ceased. Each sample typically required 2–3 h/site.

Statistical Analyses
We used the Huggins Robust Design model (Huggins

1989, 1991) to estimate apparent survival while accounting for

imperfect detection and to estimate of the numbers of

individuals remaining after each sampling period. Population

estimates from the Huggins Robust Design model (Huggins

1989, 1991) are derived using the actual number of individuals

observed during a primary sample and detection probability.

We were interested in the influence of individual traits (sex,

length, and species), environmental factors (site within river

and whether or not flood events had occurred between primary

sampling periods), and number of years following release on

survival. We fit a single model that included all covariates

instead of fitting a suite of models and comparing model fit

(Burnham and Anderson 2002). Consequently, we attained

estimates for each species released at each site during each

year by estimating a species effect, site effect, and an effect of

years following release, along with the individual covariates of

sex and length and the environmental covariate of the presence

of a flood. We did not include group (site or species) by

sampling period interactions because we had no reason to

believe that survival would vary along that spatio-temporal

scale (Anderson and Burnham 2002). We constrained our

model so there was no immigration or emigration between

primary samples, which we believed was biologically

reasonable given the limited vagility of freshwater mussels

(Amyot and Downing 1998; Schwalb and Pusch 2007). We fit

detection as a function of sampling period and site to

encompass differences in sampling efficiency due to variation

in flow, temperature, and depth among dates and variation in

habitat conditions among sites. We did not account for

species-specific differences in detection because we used PIT

tags and hand-held readers for both species and did not believe

detection would differ by species when using this method.

Table 1. Number of Clubshell and Northern Riffleshell released into the Salt Fork and Middle Fork Vermilion rivers in 2012, 2013, and 2014.

Site

2012 2013 2014

Clubshell Riffleshell Clubshell Riffleshell Clubshell Riffleshell

Salt Fork

1 - 291 - - - -

2 106 196 258 - - -

3 91 470 250 - - -

4 - - 50 50 277 290

Middle Fork

5 - - 50 50 - -

6 - - 50 50 175 180

7 - - 50 50 181 174

8 - - 50 49 174 133

Totals 197 957 758 249 807 777

Figure 2. Robust design as employed in this study, with primary samples

(seasons) and secondary samples (observers).
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Post hoc analyses indicated that inclusion of species-specific

detection had very little influence on survival probabilities

(i.e., estimates were within 0.01%). We determined if a flood

occurred between primary samples using the Indicators of

Hydrologic Alteration software package (IHA; Richter et al.

1996) and discharge data for both streams from the U.S.

Geological Survey National Water Information System

(https://waterdata.usgs.gov/il/nwis/rt; gages 03336900 and

03336645). We did not differentiate between small floods

and large floods as identified by IHA, and anything equivalent

to or greater than a 2-yr flood event was considered a flood.

We used the Huggins’ p and c extension in Program MARK

(White and Burnham 1999) with initial capture probability (p,

probability of detecting an individual at least once during a

primary sample) equal to recapture probability (c, probability

of detecting an individual during a primary sample given it is

detected) because secondary samples occurred via the same

method on the same day. We interpreted the strength and

biological meaning of each model covariate using the beta

coefficients (b) and their 95% confidence intervals and log-

odds ratios, which approximate how much more likely it is for

an event (survival) to occur based on the beta coefficient (log-

odds ratio ¼ eb, Gerard et al. 1998; Hosmer and Lemeshow

2010).

RESULTS
Detection rate averaged 0.78 across both species (range of

averages ¼ 0.66–0.90; Appendix 1). Detection was generally

greatest in autumn. Average detection in autumn samples was

about 1.25 times greater than for spring and summer samples;

we had only one winter sample because of high flows and

frozen conditions. However, detection probabilities were

highly variable among sites and sampling periods (Appendix

1).

Monthly survival varied among species, sites, and

sampling periods. Average monthly survival was 0.981 for

Clubshell and 0.905 for Northern Riffleshell; these values

translate to an approximate annual survival of 0.79 for

Clubshell and 0.30 for Northern Riffleshell, irrespective of

site, individual traits, and years following release. The b
coefficient and log-odds ratio showed that, overall, Clubshell

was approximately 5 times more likely to survive than

Northern Riffleshell, but the precision of this estimate was

low (95% confidence interval¼ 1.57–18.003; Table 2). There

was no difference in survival among males, females, and

mussels of unknown sex; confidence intervals included zero

for all coefficients (Table 2). There was no appreciable effect

of size on survival. The log-odds ratio indicated that

individuals were 1.009 times more likely to survive (95%

confidence interval ¼ 1.003–1.016) for every mm increase in

length (Table 2).

Survival was greatest at Sites 1 and 4 on the Salt Fork and

lowest at Site 7 on the Middle Fork (Figs. 3–6). Log-odds

ratios showed that mussels were nearly 6 times less likely to

survive at Site 7 than Site 1, and mussels were 2–4 times less

likely to survive at Sites 2, 3, 5, and 6 (Table 2). Survival was

reduced following floods. The log-odds ratio showed that

Table 2. Parameter estimates (b coefficients), standard errors (SE), log-odds (eb), and log-odds lower and upper 95% confidence limits (CL) of monthly survival of

translocated Clubshell and Northern Riffleshell relative to site, years following release, species, sex, mussel length, and presence of flood between primary

samples. Parameter estimates should be interpreted in relation to the baseline, which was Northern Riffleshell of average length and unknown sex at Site 1, four

years postrelease, and during a period with no flooding, as indicated.

Parameter Estimate SE Log-odds Lower CL log-odds Upper CL log-odds

Intercept 4.760 0.891

Individual traits

Clubshell versus Riffleshell 1.670 0.623 5.312 1.567 18.011

Male versus unknown 0.207 0.620 1.230 0.365 4.150

Female versus unknown �0.117 0.621 0.890 0.263 3.004

Length 0.009 0.004 1.009 1.003 1.016

Environmental factors

Site 2 versus Site 1 �0.853 0.085 0.426 0.361 0.504

Site 3 versus Site 1 �1.402 0.079 0.246 0.211 0.287

Site 4 versus Site 1 �0.007 0.165 0.993 0.718 1.374

Site 5 versus Site 1 �0.999 0.130 0.368 0.286 0.475

Site 6 versus Site 1 �1.063 0.132 0.345 0.267 0.448

Site 7 versus Site 1 �1.757 0.128 0.173 0.134 0.222

Site 8 versus Site 1 �0.958 0.142 0.384 0.290 0.507

Flood versus No Flood �0.530 0.077 0.589 0.506 0.685

Years following release

Year 1 versus Year 4 �1.260 0.658 0.284 0.078 1.030

Year 2 versus Year 4 �1.666 0.661 0.189 0.052 0.691

Year 3 versus Year 4 �1.228 0.660 0.293 0.080 1.066
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Figure 3. Derived estimates of proportion of Clubshell remaining at each release site in the Middle Fork from 2012 to 2016. Gray boxes indicate when a flood

occurred. Numbers of individuals released per year per site can be viewed in Table 1.

Figure 4. Derived estimates of proportion of Clubshell remaining at each release site in the Salt Fork from 2012 to 2016. Gray boxes indicate when a flood

occurred. Numbers of individuals released per year per site can be viewed in Table 1.
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Figure 5. Derived estimates of proportion of Northern Riffleshell remaining at each release site in the Middle Fork from 2012 to 2016. Gray boxes indicate when a

flood occurred. Numbers of individuals released per year per site can be viewed in Table 1.

Figure 6. Derived estimates of proportion of Northern Riffleshell remaining at each release site in the Salt Fork from 2012 to 2016. Gray boxes indicate when a

flood occurred. Numbers of individuals released per year per site can be viewed in Table 1.
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mussels were 1.70 times less likely to survive after floods

(95% confidence interval: 1.46–1.98) than after periods with

no floods; this is equivalent to a reduction of monthly survival

from 0.950 to 0.917 (average of all species and sites). The

occurrence of a flood on the Middle Fork during June–July

2015 was associated with a sharp decline in population size for

both species (Figs. 3, 5), but the influence of other flood events

was not associated with similar declines. We did not model

river as a separate factor (see Methods), but survival appeared

to be greater in the Salt Fork than in the Middle Fork. An

average of 62% of Clubshell and 19% of Northern Riffleshell

were alive in the Salt Fork in 2016 compared with only 21% of

Clubshell and 4% of Northern Riffleshell in the Middle Fork in

2016 (Figs. 3–6). This difference was apparent despite the fact

that most mussels were translocated to the Salt Fork 1–2 yr

earlier than in the Middle Fork (Table 1).

Number of years following release was an important

determinant of survival. Survival was greatest in the fourth

year following a release; individuals were 3.52 times more

likely to survive in the fourth year following release (95%

confidence interval: 0.97–12.80) compared to the first year

following release (Table 2). Survival was lowest in the second

year following release; individuals were 1.50 times less likely

to survive (95% confidence interval: 1.30–1.70) compared to

the first year (Table 2).

DISCUSSION
The long-term efficacy of a reintroduction program

depends on the establishment of a self-sustaining population,

which requires translocated individuals to survive until they

reproduce and replace themselves. It is too early to tell if the

Clubshell and Northern Riffleshell reintroduction program into

Illinois has been a success because no recruitment has been

documented. Reintroduction of the Clubshell appears to have

been more successful initially than reintroduction of Northern

Riffleshell. Reintroduced Clubshell survived at a much greater

rate and represented the majority of individuals remaining after

five years of monitoring. Annual survival for Clubshell (0.79)

is within the estimated range for other mussel species in the

wild, (0.50–0.99, Hart et al. 2001; Villella et al. 2004) and near

the estimates of the closely related Southern Clubshell

(Pleurobema decisum) (0.91, Haag 2012). However, annual

survival for Northern Riffleshell (0.30) was well below those

values, those reported from French Creek, Pennsylvania,

which averaged 0.60 (Crabtree and Smith 2009), and those of

the closely related Oystermussel (Epioblasma capsaeformis)

(0.73, Jones and Neves 2011; Haag 2012).

Some species may be inherently more difficult to

translocate. There is high variability in the success of

translocation projects, ranging from nearly all individuals

remaining after a few years to very few if any (e.g., Ahlstedt

1979; Sheehan et al. 1989; Cope et al. 2003). Some of this

variation may be explained by inherent life history differences

among species, and Clubshell probably lives longer than

Northern Riffleshell. For instance, the Southern Clubshell, a

congener of Clubshell, can reach 45 yr of age (Haag and Rypel

2011), while Northern Riffleshell is a relatively short-lived

species with a maximum age reported in French Creek,

Pennsylvania, of 11 yr (Crabtree and Smith 2009). Based on

these differences, Northern Riffleshell is expected to have

lower survival than Clubshell even in wild populations, and

our data show that translocated populations may have even

lower survival. Consequently, translocation of short-lived

species such as Northern Riffleshell may require larger

numbers of individuals and repeated translocations to

overcome high mortality and ensure that translocated individ-

uals experience conditions favorable for recruitment.

Differences in hydrology, either between rivers or even

within the same river, may play an important role in

determining the suitability of sites for freshwater mussel

reintroduction (Cope et al. 2003; Carey et al. 2015). The

hydrology, land use, and watershed size of the Vermilion

River basin differ from the source location of the Allegheny

River (Larimore and Smith 1963; Smith 1968; Larimore and

Bayley 1996; White et al. 2005), thus some discrepancy in

survival between the source and recipient basins may be

expected. However, the Salt Fork Vermilion and Middle Fork

Vermilion rivers are comparable in size and have similar land

use and hydrology, yet we found that survival varied even

among sites within a river. Local-scale differences among

sites, such as substrate or gradient, can lead to biologically

significant differences that influence survival (McRae et al.

2004). We selected release sites based on the best available

habitat and species assemblage data, yet unmeasured habitat

differences and stochastic events appeared to have a large

effect on survival. Similar results have been observed in other

translocations, such as siltation due to bank failure following

flow diversion (Bolden and Brown 2002), possible washout

due to earthen causeway removal (Tiemann et al. 2016), or

diminished recovery of relocated individuals in sites with high

current velocity in the two years following relocation (Dunn et

al. 2000).

High-discharge events present an ongoing threat to the

reintroduction of Clubshell, Northern Riffleshell, and similar

translocation projects. High-flow events have been problem-

atic in other translocation projects (e.g., Sheehan et al. 1989;

Carey et al. 2015) and were clearly detrimental for

translocated Clubshell and Northern Riffleshell. Following

the flood in June–July 2015, we examined the nearest

downstream gravel bar at a few sites and found numerous

stranded and dead individuals. Existing native mussel

communities in the Salt and Middle Fork Vermilion rivers

have persisted throughout similar high-flow events, but

translocated mussels may be at a disadvantage. PIT tags

can decrease the burrowing rate of individuals (Wilson et al.

2011), and translocated mussels may have lower energetic

status (Patterson et al. 1997), which could reduce their ability

to anchor themselves in the substrate or rebury after a flood

event (Killeen and Moorkens 2016). Additionally, the native

mussel community represents individuals that have found

optimal locations to withstand scouring and dislodging. The
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Clubshell and Northern Riffleshell we translocated may not

have had enough time to find optimal locations, which may

have made them more vulnerable to dislodgement and may

partly explain why individuals survived at a greater rate 4 yr

following release.

We provide the following recommendations for conducting

and monitoring reintroduction efforts. The best time to

monitor Clubshell and Northern Riffleshell was during

autumn, when stream flows were low and we observed the

greatest probability of detection. Sampling was difficult or

impossible during the spring because of high stream flows,

which resulted in reduced detectability using handheld readers;

sampling also was difficult in winter because of high flows and

occasional ice cover. Spreading reintroduction efforts over

several geographically separate river systems could lessen risk

of failure due to stochastic events such as floods, chemical

spills, and biological invasion (e.g., Griffith et al. 1989; Trdan

and Hoeh 1993). Translocating individuals over a period of

several years might also reduce the overall risk of failure due

to isolated events occurring in a particular year. For instance,

many Clubshell and Northern Riffleshell, especially in the

Middle Fork, were lost during a late spring/early summer high-

flow event in 2015. Finally, stocking greater numbers of

individuals in multiple translocations for species with naturally

low annual survival, such as Northern Riffleshell, may be

necessary to maximize chances for natural recruitment.
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Appendix 2. Monthly apparent survival estimates for Clubshell. Years (2012–2014) represent the year animals were released. Numbers in parentheses beside

primary sample indicate the number of months since the preceding sample; 95% confidence intervals are provided in parentheses beside survival estimates. Bold

rows indicate a flood occurred during that period (e.g., between Su 2013 and Au 2013). Sp¼ spring, Su¼ summer, Au¼ autumn, Wi¼ winter.

Primary

Samples (mo)

Salt Fork Vermilion River

Site 1 Site 2 Site 3 Site 4

2012 2013 2012 2013 2012 2013 2014

Su 2012–Au 2012 (2) 0.994

(0.993–0.995)

- 0.977

(0.974–0.981)

- 0.987

(0.984–0.989)

- -

Au 2012–Su 2013 (9) 0.990

(0.989–0.992)

- 0.962

(0.956–0.967)

- 0.978

(0.973–0.982)

- -

Su 2013–Au 2013 (2) 0.992

(0.990–0.993)

0.994

(0.993–0.995)

0.966

(0.962–0.971)

0.977

(0.974–0.981)

0.980

(0.976–0.984)

0.994

(0.992–0.996)

-

Au 2013–Wi 2014 (4) 0.992

(0.990–0.993)

0.994

(0.993–0.995)

0.966

(0.962–0.971)

0.977

(0.974–0.981)

0.980

(0.976–0.984)

0.994

(0.992–0.996)

-

Wi 2014–Sp 2014 (2) 0.992

(0.990–0.993)

0.994

(0.993–0.995)

0.966

(0.962–0.971)

0.977

(0.974–0.981)

0.980

(0.976–0.984)

0.994

(0.992–0.996)

-

Sp 2014–Su 2014 (2) 0.992

(0.990–0.993)

0.994

(0.993–0.995)

0.966

(0.962–0.971)

0.977

(0.974–0.981)

0.980

(0.976–0.984)

0.994

(0.992–0.996)

-

Su 2014–Au 2014 (4) 0.995

(0.993–0.996)

0.992

(0.990–0.993)

0.978

(0.973–0.982)

0.966

(0.962–0.971)

0.987

(0.983–0.990)

0.991

(0.988–0.994)

-

Au 2014–Sp 2015 (5) 0.995

(0.993–0.996)

0.992

(0.990–0.993)

0.978

(0.973–0.982)

0.966

(0.962–0.971)

0.987

(0.983–0.990)

0.991

(0.988–0.994)

0.994

(0.992–0.996)

Sp 2015–Su 2015 (3) 0.991

(0.988–0.993)

0.986

(0.983–0.988)

0.963

(0.955–0.97)

0.944

(0.934–0.953)

0.979

(0.972–0.983)

0.986

(0.980–0.990)

0.990

(0.986–0.993)

Su 2015–Au 2015 (3) 0.995

(0.993–0.996)

0.992

(0.990–0.993)

0.978

(0.973–0.982)

0.966

(0.962–0.971)

0.987

(0.983–0.990)

0.991

(0.988–0.994)

0.994

(0.992–0.996)

Au 2015–Sp 2016 (6) 0.997

(0.990–0.999)

0.991

(0.988–0.993)

0.989

(0.961–0.997)

0.963

(0.955–0.970)

0.994

(0.977–0.998)

0.991

(0.986–0.994)

0.986

(0.98–0.990)
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Appendix 2, extended.

Middle Fork Vermilion River

Site 5 Site 6 Site 7 Site 8

2013 2014 2013 2014 2013 2014 2013

- - - - - - -

- - - - - - -

0.985

(0.980–0.988)

- 0.984

(0.979–0.988)

- 0.968

(0.959–0.975)

- 0.985

(0.981–0.989)

0.985

(0.980–0.988)

- 0.984

(0.979–0.988)

- 0.968

(0.959–0.975)

- 0.985

(0.981–0.989)

0.985

(0.980–0.988)

- 0.984

(0.979–0.988)

- 0.968

(0.959–0.975)

- 0.985

(0.981–0.989)

0.985

(0.980–0.988)

- 0.984

(0.979–0.988)

- 0.968

(0.959–0.975)

- 0.985

(0.981–0.989)

0.977

(0.971–0.982)

- 0.976

(0.969–0.981)

- 0.953

(0.940–0.963)

- 0.978

(0.972–0.983)

0.977

(0.971–0.982)

0.985

(0.980–0.988)

0.976

(0.969–0.981)

0.984

(0.979–0.988)

0.953

(0.940–0.963)

0.968

(0.959–0.975)

0.978

(0.972–0.983)

0.962

(0.950–0.971)

0.974

(0.966–0.981)

0.960

(0.946–0.97)

0.973

(0.964–0.980)

0.922

(0.898–0.941)

0.947

(0.931–0.959)

0.964

(0.951–0.973)

0.977

(0.971–0.982)

0.985

(0.980–0.988)

0.976

(0.969–0.981)

0.984

(0.979–0.988)

0.953

(0.940–0.963)

0.968

(0.959–0.975)

0.978

(0.972–0.983)

0.975

(0.966–0.982)

0.962

(0.950–0.971)

0.974

(0.963–0.981)

0.960

(0.946–0.97)

0.953

(0.940–0.963)

0.922

(0.898–0.941)

0.976

(0.967–0.983)
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Appendix 3. Monthly apparent survival estimates for Northern Riffleshell. Years (2012–2014) represent the year animals were released. Numbers in parentheses

beside primary sample indicate the number of months since the preceding sample; 95% confidence intervals are provided in parentheses beside survival estimates.

Bold rows indicate a flood occurred during that period (e.g., between Su 2013 and Au 2013). Sp¼ spring, Su¼ summer, Au ¼ autumn, Wi¼ winter.

Primary Samples (months)

Salt Fork

Site 1 Site 2 Site 3 Site 4

2012 2013 2012 2013 2012 2013 2014

Su 2012–Au 2012 (2) 0.971

(0.907–0.991)

- 0.891

(0.706–0.965)

- 0.934

(0.806–0.98)

- -

Au 2012–Su 2013 (9) 0.951

(0.852–0.985)

- 0.828

(0.586–0.942)

- 0.893

(0.711–0.966)

- -

Su 2013–Au 2013 (2) 0.957

(0.867–0.987)

0.971

(0.907–0.991)

0.844

(0.614–0.949)

0.891

(0.706–0.965)

0.904

(0.735–0.97)

0.970

(0.904–0.991)

-

Au 2013–Wi 2014 (4) 0.957

(0.867–0.987)

0.971

(0.907–0.991)

0.844

(0.614–0.949)

0.891

(0.706–0.965)

0.904

(0.735–0.97)

0.970

(0.904–0.991)

-

Wi 2014–Sp 2014 (2) 0.957

(0.867–0.987)

0.971

(0.907–0.991)

0.844

(0.614–0.949)

0.891

(0.706–0.965)

0.904

(0.735–0.97)

0.970

(0.904–0.991)

-

Sp 2014–Su 2014 (2) 0.957

(0.867–0.987)

0.971

(0.907–0.991)

0.844

(0.614–0.949)

0.891

(0.706–0.965)

0.904

(0.735–0.97)

0.970

(0.904–0.991)

-

Su 2014–Au 2014 (4) 0.972

(0.909–0.991)

0.957

(0.867–0.987)

0.894

(0.71–0.967)

0.844

(0.614–0.949)

0.936

(0.809–0.98)

0.956

(0.862–0.987)

-

Au 2014–Sp 2015 (5) 0.972

(0.909–0.991)

0.957

(0.867–0.987)

0.894

(0.71–0.967)

0.844

(0.614–0.949)

0.936

(0.809–0.98)

0.956

(0.862–0.987)

0.970

(0.904–0.991)

Sp 2015–Su 2015 (3) 0.953

(0.855–0.986)

0.928

(0.793–0.978)

0.832

(0.59–0.944)

0.762

(0.483–0.916)

0.896

(0.715–0.967)

0.928

(0.785–0.979)

0.951

(0.846–0.986)

Su 2015–Au 2015 (3) 0.972

(0.909–0.991)

0.957

(0.867–0.987)

0.894

(0.71–0.967)

0.844

(0.614–0.949)

0.936

(0.809–0.98)

0.956

(0.862–0.987)

0.97

(0.904–0.991)

Au 2015–Sp 2016 (6) 0.986

(0.923–0.997)

0.953

(0.855–0.986)

0.944

(0.746–0.99)

0.832

(0.59–0.944)

0.967

(0.836–0.994)

0.952

(0.849–0.986)

0.928

(0.785–0.979)
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Appendix 3, extended.

Middle Fork

Site 5 Site 6 Site 7 Site 8

2013 2014 2013 2014 2013 2014 2013

- - - - - - -

- - - - - - -

0.924

(0.78–0.977)

- 0.920

(0.768–0.975)

- 0.851

(0.624–0.952)

- 0.927

(0.785–0.978)

0.924

(0.78–0.977)

- 0.920

(0.768–0.975)

- 0.851

(0.624–0.952)

- 0.927

(0.785–0.978)

0.924

(0.78–0.977)

- 0.920

(0.768–0.975)

- 0.851

(0.624–0.952)

- 0.927

(0.785–0.978)

0.924

(0.78–0.977)

- 0.920

(0.768–0.975)

- 0.851

(0.624–0.952)

- 0.927

(0.785–0.978)

0.890

(0.702–0.966)

- 0.884

(0.688–0.963)

- 0.792

(0.525–0.929)

- 0.894

(0.709–0.967)

0.890

(0.702–0.966)

0.924

(0.78–0.977)

0.884

(0.688–0.963)

0.920

(0.768–0.975)

0.792

(0.525–0.929)

0.851

(0.624–0.952)

0.894

(0.709–0.967)

0.827

(0.578–0.943)

0.878

(0.675–0.961)

0.818

(0.563–0.94)

0.871

(0.66–0.959)

0.691

(0.391–0.887)

0.771

(0.493–0.921)

0.833

(0.587–0.946)

0.890

(0.702–0.966)

0.924

(0.78–0.977)

0.884

(0.688–0.963)

0.920

(0.768–0.975)

0.792

(0.525–0.929)

0.851

(0.624–0.952)

0.894

(0.709–0.967)

0.881

(0.679–0.963)

0.827

(0.578–0.943)

0.874

(0.665–0.961)

0.818

(0.563–0.940)

0.776

(0.498–0.924)

0.691

(0.391–0.887)

0.885

(0.687–0.964)
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