River Research
 and Applications

Seasonal Differences in Diversity of Macroinvertebrate and Fish Taxa in a Midwestern Stream

Journal:	River Research and Applications
Manuscript ID	RRA-18-0245
Wiley - Manuscript type:	Research Article
Cate Submitted by the Author:	15-Aug-2018
Complete List of Authors:	Pant, Manisha; Virginia Institute of Marine Science, The College of William \& Mary, Biological Sciences Nepal, Vaskar; Virginia Institute of Marine Science, The College of William \& Mary West, John; Missouri Department of Conservation, Big Rivers and Wetlands Field Station Colombo, Robert; Eastern Illinois University, Biological Sciences
Keywords:	Alpha diversity, Beta diversity, macroinvertebrates, fishes, seasonal differences, freshwater streams

SCHOLARONE"
Manuscripts

1 Seasonal Differences in Diversity of Macroinvertebrate and Fish Taxa in a Midwestern

Stream

Manisha Pant ${ }^{1 \dagger}$, Vaskar Nepal ${ }^{1}$, John L. West ${ }^{2}$ and Robert E. Colombo

Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
6

[^0]
Abstract

Most biomonitoring projects focus on single species groups at time scales either too short or too coarse to detect intra-annual oscillations in biodiversity. Using a multi-faceted approach, we compared diversity indices of larval macroinvertebrate families and fish species in a Midwestern stream during spring and fall of 2009-2013, and discovered contrasting patterns in α and β diversity between the seasons for the two taxa groups. Compared to spring, both α and β diversity were significantly higher during fall for macroinvertebrates; on the contrary, only α diversity differed between the seasons for fishes. For both taxa, we partitioned the overall β diversity to identify contributions of temporal and spatial β diversity on the observed differences. The observed patterns for macroinvertebrates were likely the result of season acting as environmental filter, but sampling effects were likely more important in driving fish diversity patterns. In light of widespread conservation and restoration efforts in the Midwestern streams, it seems prudent to study community composition frequently so that baseline alpha and beta diversity can be obtained for organisms at different taxonomic levels and during different seasons.

Keywords: Alpha diversity; beta diversity; macroinvertebrates; fishes; seasonal differences; freshwater streams

\section*{Introduction}

Biodiversity loss or change have important effects on ecosystem functions and services (Cardinale et al., 2006; Worm et al., 2006) and on humanity as a whole (Cardinale et al., 2012), and thus, there is growing interest in understanding the patterns of biodiversity change at local as well as global scales. Globally, biodiversity change has been characterized by a loss in the

numbers and/or relative abundances of species in a community (i.e. α diversity), attributed mainly to anthropogenic pressures, climate change, large-scale habitat transformation, though such patterns do not seem to exist at local scales (Dornelas et al., 2014; Vellend et al., 2013). In addition, local communities have also undergone shifts in community composition due to processes such as homogenization, differentiation and local or global extinction (Magurran et al., 2018; Rahel, 2002). Cumulatively, these structural changes have also substantially affected the ecosystem function and services (Frainer et al., 2017; Hillebrand et al., 2018; Spaak et al., 2017).

Biodiversity loss and change has led to a renewed interest in the study of drivers and patterns of biodiversity in both terrestrial and aquatic systems at various temporal and spatial scales (e.g. Al-Shami et al., 2013; Anderson et al., 2011; Nekola \& White, 1999). The drivers of such variations in community structure through space and time are likely taxa- and locationspecific, and might include both deterministic and stochastic processes (Korhonen, Soininen, \& Hillebrand, 2010; Stegen et al., 2013). Influence of deterministic processes such as competition and environmental filtering leads to specific taxa exploiting specific spatial niche, and thus, to high spatial and temporal turnover with increasing habitat heterogeneity (Anderson et al., 2011; Stegen et al., 2013). Stochastic processes such as sampling and priority effects also affect observed biodiversity trends (Stegen et al., 2013). It is increasingly becoming clear that both deterministic and stochastic processes influence the diversity of communities, with the result that α and β components of diversity are inherently linked. In addition, the temporal and spatial β diversity are also related, though the relation may be context dependent (Stegen et al., 2013; Steiner \& Leibold, 2004).

Patterns and drivers of intra-annual variation in biodiversity is gaining increasing attention in the recent years (Bonada \& Resh, 2013; Cook, Housley, Back, \& King, 2018;

Tonkin, Bogan, Bonada, Rios-Touma, \& Lytle, 2017), perhaps owing to the realization that intra-annual variability in diversity of aquatic communities is generally much higher than interannual variability (Korhonen et al., 2010), potentially contributing disproportionately to the overall biodiversity of the ecosystem. Seasonal variations in biodiversity patterns may arise from different processes for different taxa or trophic levels. For example, evolution has led different species of aquatic macroinvertebrates to mature at different times of a year such that these species are able to exploit different temporal niches corresponding to the seasonal differences in environmental conditions (Bonada \& Resh, 2013; Tonkin et al., 2017; Wolda, 1988). Similarly, many species of freshwater fishes perform spawning migrations to headwaters or other streams of lower order during spring, thus occupying different spatial and temporal niches at different times of the year (Jonsson, 1991; Smith, 2002).

Research on seasonal patterns of β diversity in the freshwater ecosystems has mostly focused on macroinvertebrate communities (e.g. Costa \& Melo, 2008; Finn, Khamis, \& Milner, 2013; Heino, Muotka, \& Paavola, 2003). Few have studied differences in species turnover patterns among taxa at different trophic or taxonomic levels (Heino, Paavola, Virtanen, \& Muotka, 2005; Lepori, Palm, Brännäs, \& Malmqvist, 2005). This is problematic because different species or groups may respond differently to environmental factors and anthropogenic stressors. For example, Datry, Moya, Zubieta, \& Oberdorff (2016) observed higher β diversity in intermittent streams compared to perennial streams for fishes, but such differences were not observed for macroinvertebrates. Furthermore, most studies focus on a temporal scale either too fine (weeks-months) or too coarse (repeated annual samples) to detect effects of season (Brown, 2003; Mykrä, Heino, Oksanen, \& Muotka, 2011). For assemblages of aquatic taxa with active dispersal stages, such approaches would hinder study of metacommunity structure (Hewitt,

Thrush, \& Ellingsen, 2016; Wolda, 1988) and of intra-annual relationships between the assemblages and the environment (Heino et al., 2015). We studied the overall, temporal and spatial turnover of macroinvertebrate and fish communities in a Midwestern stream, and discovered that the patterns in taxa turnover are different for organisms at the two taxonomic levels.

Methods

Kickapoo Creek (Latitude $39^{\circ} 27^{\prime}$, Longitude $88^{\circ} 13^{\prime}$) is an approximately 15 km long, low gradient, third order Midwestern stream that drains into the Embarras River, Illinois. The drainage (area $262 \mathrm{~km}^{2}$) is mostly agricultural (63.6%) with grasslands (15.0%), forest (10.1%) and urban areas (10.9\%) contributing high sediment loading and nitrate concentrations in the water (Keefer, 2004); the substrate is mostly shifting sand and gravel. Much of Kickapoo Creek displays low geomorphic stability with high rates of bank erosion; shallow channels; low canopy cover; high sediment loads from the adjacent agricultural fields and homogenous raceway habitats with a relatively uniform depth across the length of the reach (Pant, 2014). Four fixed sites selected for this study were 232 m (Site A), 254 m (Site B) and 192 m (Site C) and 183 m (Site D) in stream length (Figure 1). Water temperature, pH and dissolved oxygen concentration were recorded during every sampling period using a YSI-85 water quality meter.

Benthic macroinvertebrate assemblages were sampled during base flow twice every year (May and September) during 2010-2013 using Illinois Environmental Protection Agency's multihabitat 20-jab method (IEPA, 2007). All major habitats within each site were sampled in approximate proportional representation within the site. Semi-quantitative samples were collected from each site using a rectangular dip-net (dimensions $0.5 \mathrm{~m} * 0.3 \mathrm{~m}$) attached to a
long pole, by "jabbing" or "sweeping," and stored in 75\% ethanol. We subsampled ~300 random individuals from each sample to standardize metrics among sites and years (IEPA, 2007). Macroinvertebrates were identified to the family level because a large fraction of individuals could not be identified below this level. We assigned tolerance values to each individual based on Merritt, Cummins, \& Berg (2008).

We sampled fishes in all sites during fall (2009-2013) and spring (2010-2012) using an AC electrofishing seine following the stream sampling guidelines by Illinois Department of Natural Resources (IDNR, 2001). At each reach, we placed block nets (12 m * $1.2 \mathrm{~m}, 5 \mathrm{~mm}$ bar mesh) at the upstream and downstream ends to form a closed site. For electrofishing, we used an 8 m electric seine with 12 copper electrodes spaced 0.75 m apart and powered by a 2000 watt AC generator. A six person crew made a single pass moving upstream through each reach to deplete the reach of all fishes. Following the electrofishing sample, downstream block nets were pulled, and all trapped fishes were collected. All fishes in the upstream blocking seine were released without enumeration. Fishes $>100 \mathrm{~mm}$ in length were identified based on Smith (2002), measured and weighed in the field, and returned back to the water unharmed. All other fishes were euthanized using a lethal dose of MS-222, preserved in 10% formalin, and later processed in lab. Fishes were assigned to tolerance and feeding guilds following Poff \& Allan (1995).

We took a multifaceted approach to evaluating differences in α and β diversity between fall and spring seasons. As measures of α diversity, we calculated six commonly used metrics related to composition, structure, and function to represent the macroinvertebrate assemblage. These indices included various indices of community composition (richness, \% Chironomidae, exponentiated Shannon index and Pielou's Evenness) and sensitive taxa (proportion of Ephemeroptera-Plecoptera-Trichoptera [EPT] taxa, Hilsenhoff's Macroinvertebrate Biotic Index
[HBI,Hilsenhoff, 1987]). Sample-specific HBI was calculated as the sum of the tolerance values divided by the total number of individuals sampled at the site. For fish assemblage data from each site, we calculated the following six metrics: rarefied species richness, exponentiated Shannon index, Pielou's Evenness, fish Index of Biotic Integrity (IBI, Karr, Fausch, Angermeier, Yant, \& Schlosser, 1986), proportion of Cyprinids and proportion of intolerant species. Rarefied species richness was calculated for each sample as the expected species richness in a random subsample of 1000 individuals. Fish IBI was calculated using the Illinois IBI calculator (http://dnr.illinois.gov/IBICalculation/NewSampleForm.aspx), a software designed specifically for the state of Illinois to calculate the integrity scores based on fish species abundance and river attributes such as stream width, slope and region. We also calculated the relative density of fishes (catch per unit effort [CPUE]) in each sample as number of fish captured per hour of effort per $100 \mathrm{~m}^{2}$ area.

We assessed two separate components of β diversity: spatial and temporal β diversity. Spatial β diversity corresponded with the differences in assemblages among all sites during each sampling period (i.e., one beta per sampling trip), and temporal β diversity corresponded with the differences in assemblages among all sampling periods for each site (i.e., one beta per siteseason combination). Each of these components of β diversity were calculated using two measures: First, we calculated β diversity as the multivariate dispersion (MVD) around group centroids in multivariate ordination space (Anderson, Ellingsen, \& McArdle, 2006). In this method, taxa assemblage abundance data is used to calculate pairwise dissimilarities among different samples using a dissimilarity index of choice. Here, we used Bray-Curtis dissimilarity index to calculate the dissimilarity matrix, and used it to calculate the mean distances to group centroids in multivariate space. To accomplish this, we used the function betadisper in R package
vegan (version 2.4-6, Oksanen et al., 2018), with the $\sqrt{\frac{n}{n-1}}$ correction to adjust for the smallsample bias in the estimation of dispersion (Stier, Geange, Hanson, \& Bolker, 2013). Second, we used the R package betapart to calculate β diversity as the multiple-site community dissimilarity $\left(\beta_{M S}\right)$, an extension of the Bray-Curtis pairwise dissimilarity index (Baselga, 2017; Baselga \& Orme, 2012). $\beta_{M S}$ is considered a better methodological approach when quantifying the overall dissimilarity among more than two sites (Baselga, 2017). For both MVD and MS approaches, we chose Bray-Curtis dissimilarity index because of its common use in ecological literature, owing to its ideal statistical properties and ability to account for patterns of variations in abundances of species along ecological gradients. In addition, we visualized the differences in β diversity of fish or macroinvertebrate assemblages during spring and fall using two-dimensional non-metric multidimensional scaling (NMDS) ordination plots based on the Bray-Curtis dissimilarity matrices. Community metrics significantly correlated to the ordination axes were superimposed on the plot. We also used indicator species analysis (function indval in package labdsv version 1.8-0; Roberts, 2016) to compute the indicator values of each species within each group, and to find significant indicator species for each group (Dufrene \& Legendre, 1997). This approach tries to find species that have high specificity and high fidelity. For all analyses based on MVD, the assemblage data were standardized and transformed to reduce the undue influence of highly abundant species relative to uncommon species. Specifically, macroinvertebrate assemblage data were standardized by dividing by the total count for each sample, and fish community assemblage data were log transformed as suggested by Anderson et al. (2006); for each dataset, these standardizations minimized the multivariate stress when fitting NMDS.

We compared site- and sample-specific temperature and dissolved oxygen between seasons using two-sample t -tests. We also compared CPUE of fishes between seasons using a
generalized least squares model, correcting for the temporal autocorrelation with an autoregressive (order 1) correlation structure. To test for differences in diversity metrics between seasons, we used separate exact two-sample Fisher-Pitman permutation tests for each index. Because these tests do not directly account for the autocorrelated nature of the data, it was necessary to assess whether the observed changes exceeded the baseline expectations. Thus, we used a null model approach (Gotelli \& Graves, 1996), based on a toroidal shift permutation scheme. In this scheme, the start time for each taxon in an assemblage is randomized, such that species abundances vary independently, but within-species temporal-autocorrelation is preserved. For each toroidal shift permutation, we ran an exact two-sample Fisher-Pitman test as described above. We ran the permutations 1500 times to construct the null distribution of Z statistics, and calculated P value as proportion of times when the original Z statistic exceeded the Z statistics from the null distribution (Manly, 2006). To assess the effect of taxonomic resolution on the observed trends, we ran the analyses for fishes at both species and family level.

Results

Water temperatures during spring and fall samples were not statistically different from each other (mean spring: $16.6^{\circ} \mathrm{C}$; mean fall: $18.2^{\circ} \mathrm{C} ; \mathrm{t}=1.64 ; \mathrm{P}=0.11$). Macroinvertebrates from 56 families were collected from Kickapoo Creek from 2010 to 2013. The most abundant families were Caenidae (Order Ephemeroptera; mean 32.0\%), Chironomidae (Order Diptera; 30.1%) and Hydropsychidae (Order Trichoptera; 16.9\%) in fall, and Chironomidae (64.0\%), Hydropsychidae (16.2\%) and Simuliidae (Order Diptera; 4.1\%) in spring. Plecoptera were not collected during the four year period; therefore, \% EPT only includes Ephemeroptera and Trichoptera.

Richness and Shannon diversity of macroinvertebrate families were significantly higher during fall compared to spring (Table 1; Figure 2). Both spatial and temporal β diversities assessed using the MVD approach were significantly higher during fall compared to spring (Table 1; Figure 3). In addition, temporal β diversity based on MS dissimilarity was significantly higher during fall compared to spring, but the corresponding spatial β diversity did not differ between seasons. NMDS ordination showed that season was structured along axis 1 of the NMDS and that samples collected during spring were markedly more similar to one another compositionally than fall samples (Figure 4). Five diversity metrics were significantly correlated to the NMDS ordination; of these, Hilsonhoff's Biotic Index and \% Chironomidae were higher in the spring samples, and \% EPT taxa was higher in fall samples. A total of 7 macroinvertebrate families were identified as indicator species for either spring or fall samples (Table 2). Taxa typically considered to be tolerant of disturbance or pollution, such as Chironomidae and Simuliidae, were indicative of fall, and taxa typically considered indicative of good stream health, such as members of Caenidae and Coenagrionidae, were indicative of spring samples (Table 2).

Within Kickapoo Creek electrofishing samples, 98,938 fish from 11 families (49 species) were collected, with Cyprinidae the most common family (88.8\%), followed by Centrarchidae (3.8\%) and Percidae (2.7%). All of the five most common species were Cyprinids: sand shiner (Notropis stramineus, 29.1\%), spotfin shiner (Cyprinella spiloptera, 17.7\%), silverjaw minnow (Notropis buccatus, 15.4\%), bluntnose minnow (Pimephales notatus, 12.7\%) and central stoneroller (Campostoma anomalum, 7.0\%).

Compared to spring samples of fishes, fall samples had significantly higher CPUE ($\mathrm{F}=$ 33.19, $\mathrm{P}<0.001$; Figure 5), exponentiated Shannon Index and species richness (Table 1). In
contrast, there were no seasonal differences in spatial or temporal β diversity indices (Table 1; Figure 3). The results were similar at both taxonomic resolutions of the fish assemblage, except for family richness, which was not significantly different between spring and fall samples (Table 1). Similar to macroinvertebrates, season was largely structured along axis 1 for fishes as well (Figure 4). Of the four diversity metrics that were significantly correlated to the NMDS ordination, fish IBI was higher in the fall samples, and percent intolerant species was higher in spring samples (Figure 4). A total of 13 fish species were identified as indicator species for either spring or fall samples (Table 2). We did not observe any distinct differences in the functional form or morphology of the indicator species for the spring and fall seasons. However, it should be noted that species typically associated with smaller streams, such as silverjaw minnow and central stoneroller, were identified as indicator species for fall but not spring season (Table 2).

Discussion

Our research showed that seasonal β diversity patterns in Kickapoo Creek are uncoupled from β diversity patterns, and that these differences are taxa-specific. We also showed that these patterns are robust to taxonomic resolution (species versus families in fishes).

There were few analogous results between the macroinvertebrate and fish communities regarding α and β diversity, suggesting different drivers at these two taxonomic/trophic levels. High instability and stress at the reach and stream levels likely affect macroinvertebrate and fish communities differently in Kickapoo Creek. Because landscape structures often influence diversity at population-genetic and community levels similarly in terrestrial, freshwater as well as marine systems (Chust et al., 2016; Finn et al., 2013; Finn \& Poff, 2011; Vellend, 2005), we suspect that differences may occur at population-genetic levels of macroinvertebrates and fishes
as well. Seasonal differences in α and β diversity has been shown to be affected greatly by temperature (Cook et al., 2018; Magurran, Dornelas, Moyes, Gotelli, \& McGill, 2015); in Kickapoo Creek, the observed differences could not be attributed to temperature differences because spring and fall samples did not differ in water temperature. This suggests that several factors other than temperature also play a crucial role in seasonal differences in diversity and need to be studied more.

There is growing consensus that interannual changes in α diversity is fairly low and stable for freshwater phytoplankton, macroinvertebrates and fishes (Goheen, White, Ernest, \& Brown, 2005; Gotelli et al., 2017; Hillebrand et al., 2018; Magurran et al., 2018), suggesting that community regulation is a general feature across taxa and ecosystems. However, major disturbances or natural shifts in environmental conditions may act as ecological filters and cause a major change in α diversity over time or space (Anderson et al., 2011; J. M. Chase, 2007). Such severe changes may result from long-term, predictable changes in environment (e.g. global temperature rise, bleaching of the coral reefs, etc.) or abrupt changes (e.g. oil spill, drought, etc.). In temperate regions of Midwestern United States, different seasons may present drastically different environmental conditions. Life history adaptations of local species to such differences have led local species to exploit different temporal (e.g. intra- or inter-annual differences) and spatial niches (e.g. headwater streams versus higher-order streams, Chase, Kraft, Smith, Vellend, \& Inouye, 2011; Cook et al., 2018; Vannote, Minshall, Cummins, Sedell, \& Cushing, 1980). Thus, season may directly affect α and β diversities through deterministic or random ecological filtering (Chase, Kraft, Smith, Vellend, \& Inouye, 2011).

Season change seemed to act as a systematic ecological filter for macroinvertebrates in Kickapoo Creek, such that specific families of macroinvertebrates were affected. Therefore,
taxa-specific differences in life history strategies may be an important factor in explaining observed differences. Chironomidae larvae generally emerge as adults during spring and summer, and thus, may not be present in the stream during fall. On the contrary, Caenis sp. demonstrate large variations in their life history patterns (e.g. C. luctuosa [Cayrou \& Céréghino, 2003]; C. horaria [Menetrey, Oertli, Sartori, Wagner, \& Lachavanne, 2008]) with individuals of these species present in the water throughout the year. This suggests that Ephemeropterans may fill the niche left open by the absence of Chironomidae during spring. Another possible explanation may be provided by the homogenizing effect of the massive spawning of macroinvertebrates during spring (Thorp \& Covich, 2009). Stress due to extreme temperature, desiccation and low foraging opportunities during summer may cause differential mortality among taxa, and thus, community composition could be highly heterogeneous during fall. The indicator macroinvertebrate taxa identified by indicator species analysis also reflect seasonal differences in life cycle, with families such as Coenagrionidae and Calopterigidae, indicative of spring, occurring as adults during much of summer and fall (Thorp \& Covich, 2009).

Ephemeroptera are typically associated with higher-quality conditions. However, Ephemeroptera species observed in Kickapoo Creek (most importantly Caenis sp. and Baetis sp.) are relatively tolerant taxa that are commonly found in degraded streams (e.g., Barbour, Gerritsen, Snyder, \& Stribling, 1999; Hilsenhoff, 1987). Thus, the high proportions of Ephemeroptera, and particularly, Caenis spp., in our samples do not necessarily indicate that Kickapoo Creek is a pristine and high-quality ecosystem. This also explains why the Biotic Index was a strong predictor for spring compared to fall, even though (1) EPT taxa were proportionately more abundant in fall, and (2) Chironomidae, a taxa typically associated with polluted waters, were proportionately more abundant in spring.

Observed seasonal differences in fish diversity suggest random sampling effects of season such that entire sampling locations may be affected by seasons. Unlike macroinvertebrates, upstream fish movement and migration can be directly hindered by harsh conditions in the downstream locations. For example, low flow during summer may prevent the upstream movement of migrating fish towards the upstream sites, and thus, all fish species in the upstream sites are affected. As a further example from Kickapoo Creek, during summer 2013, a beaver dam had formed at the downstream end of the site C, thus dramatically increasing the mean depth, obliterating the riffles, and decreasing the stream flow in the entire site. The fall 2013 sample for site C included a greatly reduced number of minnows (which are most common in shallow raceway habitats) and darters (which prefer riffles, Smith, 2002). Such dramatic change in species composition was clear in the NMDS plot as well. It should be noted, however, that even though season seemed to affect macroinvertebrates deterministically and fishes via random, reach-specific processes, the actual effect is likely due to a combination of the two processes.

Our results may also inform the sampling strategies to be employed when assessing the biodiversity of fishes and macroinvertebrates in Midwestern streams. Significant differences in alpha diversity of macroinvertebrates and fishes in Kickapoo Creek means that long-term monitoring projects, often conducted only once a year, need to be conducted during the same season for valid comparison. The choice of the season may depend on beta diversity differences between seasons. Lower temporal and spatial β diversity of macroinvertebrates during spring suggests that sampling during spring would allow assessing true changes in assemblages with the need to sample few sites. On the contrary, owing to similar β diversity between spring and fall, choice of season for sampling fishes is not clear. However, NMDS suggested higher overall
homogeneity of samples during fall, suggesting that samplings should be conducted during fall. Similar results were also obtained in the Vermillion River, Illinois, where Hastings, Meiners, Colombo, \& Thomas (2016) observed more homogenous composition of fishes during fall compared to spring. These results suggest that fish sampling during spring should be conducted in either large reaches or several smaller reaches at multiple occasions (i.e. multiple years). Furthermore, \% intolerant fish species was correlated with the NMDS such that higher proportion of intolerant species were collected in spring samples. Also, some large-riverassociated fishes, such as the longnose gar (Lepisosteus osseus) were only observed in-and identified as indicator species for-the spring samples. Longnose gar and other large-river associated-fishes often migrate upstream into the creek from the Embarras River during spring for spawning (Johnson \& Noltie, 1996); some of these species/individuals may remain in the creek during the fall if deeper habitats are available(Schlosser, 1987). Similar life history differences may also explain the observed high density of fishes in fall compared to spring samples. Fall samples likely included young of year fish that were larval stage earlier in the summer. Winter mortality may also contribute to fewer fish in the spring. Finally, fishes tend to stay in one general area during warmer periods (Barbour et al., 1999); therefore, the catchability might have increased during fall samples.

We have shown that season has a different effect on species richness and turnover of macroinvertebrates compared to fishes in Kickapoo Creek. We suspect similar patterns exist in other streams as well because most third- to fifth-order streams in the Midwestern United States are disturbed and face issues similar to Kickapoo Creek (e.g. siltation, agricultural runoff, effluent from wastewater treatment plant, etc.). However, stochastic interannual and reachspecific factors also play important role in determining species turnover among
macroinvertebrates and fishes. Therefore, frequent and rigorous assessment of animals need to be conducted to understand stream conditions and beta diversity to inform conservation decisions (Socolar, Gilroy, Kunin, \& Edwards, 2016).

Acknowledgments

We thank Drs. Scott Meiners, Jeffrey Laursen and Charles Pederson for useful discussions, comments and suggestions. Many undergraduate and graduate students at Eastern Illinois University helped collect and process the samples. Don Roseboom and Trent Thomas provided logistical support. We also thank the landowners for allowing us to use their properties during the sampling. Funding for the research was provided by the Illinois Water Resources Center and the U.S. Geological Survey.

Conflict of Interest

The Author declare no conflict of interest.

References

Al-Shami, S. A., Heino, J., Che Salmah, M. R., Abu Hassan, A., Suhaila, A. H., \& Madrus, M. R. (2013). Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshwater Biology, 58(6), 1126-1137.
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., ... others. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14(1), 19-28.
Anderson, M. J., Ellingsen, K. E., \& McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9(6), 683-693.
Barbour, M. T., Gerritsen, J., Snyder, B. D., \& Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish ($2^{\text {nd }}$ edition). US Environmental Protection Agency, Office of Water Washington, DC.

Baselga, A. (2017). Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution, 8(7), 799-808.
Baselga, A., \& Orme, C. D. L. (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5), 808-812.
Bonada, N., \& Resh, V. H. (2013). Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia, 719(1), 1-29.
Brown, B. L. (2003). Spatial heterogeneity reduces temporal variability in stream insect communities. Ecology Letters, 6(4), 316-325.
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., ... Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59.

Cayrou, J., \& Céréghino, R. (2003). Life history, growth and secondary production of Caenis luctuosa and Cloeon simile (Ephemeroptera) in a small pond, SW France. Aquatic Insects, 25(3), 191-201.
Chase, J. M. (2007). Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences, 104(44), 17430-17434.
Chase, Jonathan M., Kraft, N. J. B., Smith, K. G., Vellend, M., \& Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α diversity. Ecosphere, 2(2), 1-11.
Chust, G., Villarino, E., Chenuil, A., Irigoien, X., Bizsel, N., Bode, A., ... Borja, A. (2016). Dispersal similarly shapes both population genetics and community patterns in the marine realm. Scientific Reports, 6, srep 28730.
Cook, S. C., Housley, L., Back, J. A., \& King, R. S. (2018). Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology, 99(1), 47-56.
Costa, S. S., \& Melo, A. S. (2008). Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia, 598(1), 131-138.

Datry, T., Moya, N., Zubieta, J., \& Oberdorff, T. (2016). Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshwater Biology, 61(8), 1335-1349.
Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., \& Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344(6181), 296-299.
Dufrene, M., \& Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345-366.
Finn, D. S., Khamis, K., \& Milner, A. M. (2013). Loss of small glaciers will diminish beta diversity in Pyrenean streams at two levels of biological organization. Global Ecology and Biogeography, 22(1), 40-51.
Finn, D. S., \& Poff, N. L. (2011). Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. Journal of the North American Benthological Society, 30(1), 273-283.
Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim, M., \& Aschan, M. M. (2017). Climate-driven changes in functional biogeography of Arctic marine fish communities. Proceedings of the National Academy of Sciences, 114(46), 12202-12207.
Goheen, J. R., White, E. P., Ernest, S. M., \& Brown, J. H. (2005). Intra-guild compensation regulates species richness in desert rodents. Ecology, 86(3), 567-573.
Gotelli, N. J., \& Graves, G. R. (1996). Null models in ecology. Smithsonian Institution.
Gotelli, N. J., Shimadzu, H., Dornelas, M., McGill, B., Moyes, F., \& Magurran, A. E. (2017). Community-level regulation of temporal trends in biodiversity. Science Advances, 3(7), e1700315.
Hastings, R. P., Meiners, S. J., Colombo, R. E., \& Thomas, T. (2016). When to sample: flow variation mediates low-head dam effects on fish assemblages. Journal of Freshwater Ecology, 31(2), 191-197.
Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., \& Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology, 60(5), 845-869.
Heino, J., Muotka, T., \& Paavola, R. (2003). Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology, 72(3), 425434.

Heino, J., Paavola, R., Virtanen, R., \& Muotka, T. (2005). Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodiversity and Conservation, 14(2), 415-428.
Hewitt, J. E., Thrush, S. F., \& Ellingsen, K. E. (2016). The role of time and species identities in spatial patterns of species richness and conservation. Conservation Biology, 30(5), 10801088.

Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., ... Larsen, S. (2018). Biodiversity change is uncoupled from species richness trends:

Consequences for conservation and monitoring. Journal of Applied Ecology, 55(1), 169184.

Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20(1), 31-40.
IDNR (Illinois Department of Natural Resources) (2001). Fisheries stream sampling guidelines. Illinois Department of Natural Resources - Division of Fisheries, Springfield, Illinois.
IEPA (Illinois Environmental Protection Agency) (2007). Methods of collecting macroinvertebrates in streams. Bureau of Water, Springfield, Illinois.
Johnson, B. L., \& Noltie, D. B. (1996). Migratory dynamics of stream-spawning longnose gar (Lepisosteus osseus). Ecology of Freshwater Fish, 5(3), 97-107.
Jonsson, N. (1991). Influence of water flow, water temperature and light on fish migration in rivers. Nordic Journal of Freshwater Research, 66(1991), 20-35.
Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., \& Schlosser, I. J. (1986). Assessing biological integrity in running waters: A Method and Its Rationale. Illinois Natural History Survey, Champaign, Special Publication, 5.
Keefer, L. (2004). Sediment and water quality monitoring for the Hurricane and Kickapoo Creek watersheds, Coles and Cumberland counties, Illinois. SWS Contract Report; 2004-05.
Korhonen, J. J., Soininen, J., \& Hillebrand, H. (2010). A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 91(2), 508-517.
Lepori, F., Palm, D., Brännäs, E., \& Malmqvist, B. (2005). Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecological Applications, 15(6), 2060-2071.
Magurran, A. E., Deacon, A. E., Moyes, F., Shimadzu, H., Dornelas, M., Phillip, D. A. T., \& Ramnarine, I. W. (2018). Divergent biodiversity change within ecosystems. Proceedings of the National Academy of Sciences, 115(8), 1843-1847.
Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., \& McGill, B. (2015). Rapid biotic homogenization of marine fish assemblages. Nature Communications, 6, 8405.
Manly, B. F. J. (2006). Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall/CRC.
Menetrey, N., Oertli, B., Sartori, M., Wagner, A., \& Lachavanne, J. B. (2008). Eutrophication: are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia, 597(1), 125135.

Merritt, R., Cummins, K., \& Berg, M. (2008). An introduction to the aquatic insects of North America (4th Edition.). Dubuque, IA.: Kendall Hunt Publishing Company.
Mykrä, H., Heino, J., Oksanen, J., \& Muotka, T. (2011). The stability-diversity relationship in stream macroinvertebrates: influences of sampling effects and habitat complexity. Freshwater Biology, 56(6), 1122-1132.
Nekola, J. C., \& White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26(4), 867-878.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... Wagner, H. (2018). vegan: Community Ecology Package (Version 2.5-2). Retrieved from https://CRAN.R-project.org/package=vegan
Pant, M. (2014). Effects of instream habitat restoration on macroinvertebrate and fish communities in a small Midwestern stream. Eastern Illinois University, Charleston. Retrieved from http://thekeep.eiu.edu/theses/1311
Poff, N. L., \& Allan, J. D. (1995). Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76(2), 606-627.
Rahel, F. J. (2002). Homogenization of Freshwater Faunas. Annual Review of Ecology and Systematics, 33(1), 291-315. https://doi.org/10.1146/annurev.ecolsys.33.010802.150429
Roberts, D. W. (2016). labdsv: Ordination and Multivariate Analysis for Ecology (Version 1.80). Retrieved from https://CRAN.R-project.org/package=labdsv

Schlosser, I. J. (1987). A conceptual framework for fish communities in small warmwater streams. In W. J. Matthews \& D. C. Heins (Eds.), Community and evolutionary ecology of North American stream fishes. (pp. 17-24). Norman: University of Oklahoma Press.
Smith, P. W. (2002). The fishes of Illinois (Second Edition). University of Illinois Press.
Socolar, J. B., Gilroy, J. J., Kunin, W. E., \& Edwards, D. P. (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology \& Evolution, 31(1), 67-80.
Spaak, J. W., Baert, J. M., Baird, D. J., Eisenhauer, N., Maltby, L., Pomati, F., ... De Laender, F. (2017). Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecology Letters, 20(10), 1315-1324.
Stegen, J. C., Freestone, A. L., Crist, T. O., Anderson, M. J., Chase, J. M., Comita, L. S., ... others. (2013). Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 22(2), 202-212.
Steiner, C. F., \& Leibold, M. A. (2004). Cyclic assembly trajectories and scale-dependent productivity-diversity relationships. Ecology, 85(1), 107-113.
Stier, A. C., Geange, S. W., Hanson, K. M., \& Bolker, B. M. (2013). Predator density and timing of arrival affect reef fish community assembly. Ecology, 94(5), 1057-1068.
Thorp, J. H., \& Covich, A. P. (Eds.). (2009). Ecology and classification of North American freshwater invertebrates (3rd ed.). Academic press.
Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B., \& Lytle, D. A. (2017). Seasonality and predictability shape temporal species diversity. Ecology, 98(5), 1201-1216.
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., \& Cushing, C. E. (1980). The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130-137.
Vellend, M. (2005). Species diversity and genetic diversity: parallel processes and correlated patterns. The American Naturalist, 166(2), 199-215.
Vellend, M., Baeten, L., Myers-Smith, I. H., Elmendorf, S. C., Beauséjour, R., Brown, C. D., ... Wipf, S. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences, 201312779.

Wolda, H. (1988). Insect seasonality: why? Annual Review of Ecology and Systematics, 19(1), 118.

Taxa	α diversity		β diversity			
	Shannon Index	Richness	Spatial		Temporal	
			MVD	MS	MVD	MS
Macroinvertebrates	0.027	0.048	0.034	0.168	0.029	0.014
Fish (Species)	0.001	0.006	0.907	0.717	0.482	0.443
Fish (Family)	0.035	0.061	0.901	0.707	0.536	0.229

Table 1: P-values associated with randomization tests comparing the observed differences in α and β diversity of macroinvertebrates and fish communities during spring and fall with a null distribution generated by a toroidal shift permutation. See text for details.

511 Table 2: Indicator species for fishes and macroinvertebrates collected from Kickapoo Creek,
512 Illinois during spring and fall 2009-2013.

Season	Indicator species (taxa)	Indicator value
Macroinvertebrates (Family)		
Fall	Chironomidae	0.72
Fall	Simulidae	0.59
Spring	Caenidae	0.95
Spring	Coenagrionidae	0.88
Spring	Calopterygidae	0.83
Spring	Tricorythidae	0.47
Spring	Corydalidae	0.31
	Fishes (Species)	
Fall	Johnny darter	0.85
Fall	Longear sunfish	0.84
Fall	Orangethroat darter	0.83
Fall	Central stoneroller	0.81
Fall	Rainbow darter	0.75
Fall	Silverjaw minnow	0.75
Fall	Golden redhorse	0.73
Fall	Redfin shiner	0.7
Fall	Largemouth bass	0.68
Fall	Mosquitofish	0.4
Spring	Golden shiner	0.33
Spring	Dusky darter	0.25
Spring	Longnose gar	0.25

Figure Legends

Figure 1: Sampling locations in Kickapoo Creek southwest of Charleston, Illinois.

Figure 2: Rarefied taxa richness and exponentiated Shannon Index for macroinvertebrates and fishes collected from Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text for details on statistical differences.

Figure 3: Spatial and temporal β diversity indices based on multiple-site dissimilarity (MS) and multivariate dispersion (MVD) approaches for macroinvertebrates and fishes collected from Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text for details on statistical differences.

Figure 4: Non-metric Multidimensional Scaling (NMDS) plot of macroinvertebrate (a) and fish (B) communities sampled from Kickapoo Creek during spring (○) and fall (■) of 2009-2013. Arrows represent the strength and direction of community metrics that are significantly correlated to the ordination axes. Labels for each sample denote site and sample year.

Figure 5: Mean total fish CPUE ($\operatorname{catch/(hr*100~m}{ }^{2}$)) was significantly higher during fall compared to spring in Kickapoo Creek (2009-2013).

Figure 1. Sampling locations in Kickapoo Creek southwest of Charleston, Illinois.

$$
571 \times 396 \mathrm{~mm}(300 \times 300 \text { DPI })
$$

Figure 2. Rarefied taxa richness and exponentiated Shannon Index for macroinvertebrates and fishes collected from Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text for details on statistical differences.
$85 \times 95 \mathrm{~mm}(600 \times 600$ DPI $)$

Spatial and temporal β diversity indices based on multiple-site dissimilarity (MS) and multivariate dispersion (MVD) approaches for macroinvertebrates and fishes collected from Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text for details on statistical differences.

$$
91 \times 104 \mathrm{~mm}(600 \times 600 \text { DPI })
$$

Figure 4. Non-metric Multidimensional Scaling (NMDS) plot of macroinvertebrate (a) and fish (B) communities sampled from Kickapoo Creek during spring (o) and fall (■) of 2009-2013. Arrows represent the strength and direction of community metrics that are significantly correlated to the ordination axes. Labels for each sample denote site and sample year.

```
235x82mm (300 x 300 DPI)
```


Figure 5. Mean total fish CPUE (catch/(hr * 100 m 2$)$) was significantly higher during fall compared to spring in Kickapoo Creek (2009-2013).
$63 \times 63 \mathrm{~mm}(600 \times 600$ DPI $)$

[^0]: ${ }^{1}$ Present address: Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA.
 ${ }^{2}$ Present address: Big Rivers and Wetlands Field Station, Missouri Department of Conservation, Jackson, MO, USA.

